首页|基于多目标多智能体强化学习的低轨卫星切换策略

基于多目标多智能体强化学习的低轨卫星切换策略

扫码查看
针对低轨卫星通信系统(LSM)中地面用户流量需求分布不均衡和用户并发切换过多等挑战,提出了一种基于多目标多智能体协同深度强化学习的低轨卫星切换策略,以地面小区用户流量需求满意度、切换时延、用户冲突为优化目标,采用多智能体协同深度学习算法对目标进行优化,其中每个智能体仅负责一个小区用户的卫星切换策略,智能体之间通过共享奖励实现协作,从而达到多目标优化的效果.仿真结果表明,所提的切换策略的平均用户流量满意度为73.1%,平均切换时延为343 ms,对比启发式算法能够更好满足地面小区用户的流量需求、平衡卫星网络的负载.
Low earth orbit satellite switching strategy based on multi-objective multi-agent reinforcement learning
To address the challenges of uneven traffic demand distribution and excessive concurrent handover among ground users in low earth orbit satellite communication systems,this paper proposes a low earth orbit satellite handover strategy based on multi-objective multi-agent collaborative deep reinforcement learning.The strategy aims to optimize the ground cell user traffic demand satisfaction,handover delay,and user conflict as the objectives,and adopts a multi-agent collaborative deep learning algorithm to optimize the objectives.Each agent is only responsible for the satellite handover strategy of one cell user,and the agents cooperate with each other by sharing rewards,thus achieving the effect of multi-objective optimization.Simulation results show that the average user traffic satisfaction of the proposed handover strategy is 73.1%,and the average handover delay is 343 ms.Compared with heuristic algorithms,the proposed strategy can better meet the traffic demand of ground cell users and balance the satellite network's load.

low earth orbit satellite networkmulti-satellite handovermulti-objective optimizationmulti-agent deep re-inforcement learning

李瑞、杨巧丽、张新澳

展开 >

南京信息工程大学电子与信息工程学院 南京 210044

国防科技大学第六十三研究所 南京 210007

低轨卫星网络 多星切换 多目标优化 多智能体深度强化学习

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(3)
  • 25