首页|基于DeepLabV3+孪生网络的遥感建筑物变化检测

基于DeepLabV3+孪生网络的遥感建筑物变化检测

扫码查看
针对多尺度下小建筑易漏检及建筑物轮廓边界检测精度不足的情况,提出一种基于DeepLabV3+的双通道孪生网络.首先,为提高分割结果的精确度,同时避免网络层数加深带来的模型过拟合问题,采用改进后的ResNeXt50(32×4d)作为主干网络来提取特征;其次,针对孪生网络特征融合不充分的问题,设计了基于注意力的双通道融合模块;此外,为提高模型整体信息感知能力,对空洞空间卷积金字塔池化做增强处理;最后,在特征恢复阶段引入特征对齐模块和全连接CRF进一步补充和细化分割结果.在LEVIR-CD数据集上精确率(precision)、召回率(recall)和F1指数分别达到了0.923 3、0.899 4和0.911 2.
Remote sensing building change detection based on DeepLabV3+ twin network
To address the situation that small buildings are easily missed and the accuracy of building contour boundary detection is insufficient at multiple scales,a dual-channel twin network based on DeepLabV3+ is proposed in this paper.First,in order to improve the accuracy of segmentation results and avoid the overfitting problem of the model caused by the deepening of network layers,the improved ResNeXt50(32×4d)is used as the backbone network to extract features and optimize the computational efficiency of the model;second,to address the problem of inadequate feature fusion in the twin network,an attention-based dual-channel fusion module is designed;in addition,to improve the overall model Finally,feature alignment module and fully connected CRF are introduced in the feature recovery stage to further complement and refine the segmentation results.The precision,recall and F1 indices reach 0.923 3,0.899 4 and 0.911 2,respectively,on the LEVIR-CD dataset.

remote sensing image change detectiondual channel fusionnull space convolutionfeature alignmentfully connected CRF

郭江、辛月兰、王庆庆、王浩臣、盛月

展开 >

青海师范大学计算机学院 西宁 810001

藏语智能信息处理及应用国家重点实验室 西宁 810001

遥感图像变化检测 双通道融合 空洞空间卷积 特征对齐 全连接CRF

国家自然科学基金青海省自然科学基金面上项目

616620622022-ZJ-929

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(3)
  • 23