首页|基于孪生网络的自监督太阳能电池板裂纹检测方法

基于孪生网络的自监督太阳能电池板裂纹检测方法

扫码查看
太阳能电池板的裂纹缺陷检测能够避免电能转换效率低,以及短路造成起火的损失.针对现存对比学习方法中存在细微裂纹漏检导致检测精度低,并且严重依赖构建负样本等问题,提出了一种基于孪生网络的两阶段自监督裂纹检测方法.第1阶段提出了一种基于卷积神经网络(convolutional neural network,CNN)和Transformer的预训练编码器模型,通过孪生网络架构学习样本的精细特征表示,提高对电池板细微裂纹的特征表示能力;第2阶段基于预训练模型在少量标注样本下学习分类器以区分缺陷样本.为进一步区分不影响电池板功能的纵向裂纹,另增加了一个分类头进行判别.在ELPV数据集上的实验结果表明,方法在测试准确度方面优于其他相关检测方法,在只对数据进行少量标注的情况下准确度达到83.26%,单张检测时间为6.1 ms,同时在裂纹图像中检出纵向裂纹的召回率也有76.7%.
Crack detection method for solar panels based on siamese network and self-supervised learning
Crack defect detection in solar panels can prevent energy conversion inefficiency and the risk of short circuits causing fires.In this paper,we propose a two-stage self-supervised crack detection method based on a siamese network to address the limitations of existing contrastive learning methods,such as slight crack omission leading to low detection accuracy and heavy reliance on constructing negative samples.In the first stage,a pre-trained encoder model based on CNN and Transformers is proposed to learn fine-grained feature representations of samples using the siamese network architecture,thereby improving the feature representation capability for micro-cracks in solar panels.In the second stage,a classifier is learned based on the pre-trained model with a small amount of annotated samples to distinguish defect samples.Additionally,a separate classification head is added to further differentiate longitudinally oriented cracks that do not affect the functionality of the solar panels.Experimental results on the ELPV dataset demonstrate that the proposed method outperforms other related detection methods in terms of test accuracy,achieving an accuracy of 83.26%with only a small amount of annotated data,the detection time of single sheet was 6.1 ms,and a recall rate of 76.7%for detecting longitudinally oriented cracks in crack images.

solar panelscrack detectioncontrast learningsiamese network

崔康、陈平

展开 >

中北大学信息探测与处理山西省重点实验室 太原 030051

太阳能电池板 裂纹检测 对比学习 孪生网络

国家自然科学基金

61871351

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(3)
  • 19