首页|基于改进ResNet50的表面肌电信号手势识别

基于改进ResNet50的表面肌电信号手势识别

扫码查看
为了提高手势动作在类别众多且相似度高的情况下的识别精度,提出了一种基于连续小波变换和残差神经网络Res-Net50的表面肌电信号手势识别方法.首先对Ninapro DB2和DB3的原始表面肌电信号进行预处理和连续小波变换,得到Multi-sEMG Wavelet Map数据集,然后送入改进的ResNet50模型进行识别分类.实验结果表明,改进后的ResNet50网络模型在 Multi-sEMG Wavelet Map DB2和DB3中17种手势动作的平均准确率分别达到了96.40%和94.11%,相比ResNet50网络模型方法提升了4.87%和5.83%.实现了手势动作在类别繁多、相似度较高的情况下的精准识别.为基于非侵入式传感器和机器学习控制的假肢手提供了新方案.
SEMG gesture recognition based on improved ResNet50
To enhance the recognition accuracy of gesture actions in scenarios with numerous and highly similar categories,a gesture recognition method for surface electromyographic signals based on continuous wavelet transform and residual neural network ResNet50 is proposed.The raw surface EMG signals collected are first preprocessed and continuously wavelet transformed to obtain the Multi-sEMG Wavelet Map dataset,and then fed into the improved ResNet50 model for recognition and classification.The experimental results show that the improved ResNet50 network model achieves an average accuracy of 96.40%and 94.11%for 17 gesture actions in Ninapro DB2 and DB3,respectively,which is an improvement of 4.87%and 5.83%compared to the ResNet50 network model method.Achieved accurate recognition of gesture actions in situations with numerous and highly similar categories.A new scheme is provided for prosthetic hand based on non-invasive sensors and machine learning control.

surface electromyographycontinuous wavelet transformMulti-sEMG Wavelet MapResNet50

牛群峰、石磊、贾昆明、桂冉冉、董鹏豪、王莉

展开 >

河南工业大学电气工程学院 郑州 450000

表面肌电信号 连续小波变换 Multi-sEMG Wavelet Map ResNet50

河南工业大学创新基金计划河南省科技研究计划

2022ZKCJ032013000210100

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(4)
  • 25