首页|基于优化CBAM改进ResNet50的异常行为识别方法

基于优化CBAM改进ResNet50的异常行为识别方法

Improved abnormal behavior recognition method of ResNet50 based on optimized CBAM

扫码查看
在自动视频监控应用中,准确地识别出人类的异常行为是非常困难的任务.为了解决监测系统中异常人类活动的高效识别问题,提出了一种加强局部以及全局特征信息融合的异常行为识别模型ICBAM-ResNet50.在UTI和CASIA两个数据集上进行实验,结果表明该研究比ResNet50模型准确率分别提高了7%和8%.ICBAM模块引入一维卷积替换了原始CBAM中通道注意力的 MLP操作,将局部的时间特征整合到通道描述符中,缓解了通道维度由于全局处理产生的忽略信息交互的问题;其次引入时空注意力机制替换CBAM中的单一空间注意力机制,来提高模型的时空表征能力.最后,将优化的CBAM模块嵌入到ResNet50中,通过在ImageNet上对其进行预训练,在两个基准数据集上该模型分别达到了98.8%和97.9%的准确率.使用相同的数据集,将实验结果与原始识别方法进行了比较,结果表明该模型优于所比较的其他方法.
In automatic video surveillance applications,accurately identifying abnormal human behavior is a very difficult task.To solve the problem of efficient recognition of abnormal human activities in the monitoring system,an abnormal behavior recognition model ICBAM-ResNet50 that strengthens the fusion of local and global feature information is proposed.Experiments are carried out on the UTI and CASIA datasets,and the results show that the accuracy of the study is 7%and 8%higher than that of the ResNet50 model,respectively.The ICBAM module introduces one-dimensional convolution to replace the MLP operation of channel attention in the original CBAM,integrating local temporal features into channel descriptors.Which alleviates the problem of ignoring information interaction caused by global processing in the channel dimension.Secondly,the spatiotemporal attention mechanism is introduced to replace the single spatial attention mechanism in CBAM to improve the spatiotemporal representation ability of the model.Finally,the optimized CBAM module is embedded in ResNet50,and by pre-training it on ImageNet,the model achieves 98.8%and 97.9%accuracy on two benchmark datasets,respectively.Using the same dataset,the experimental results are compared with the original recognition method,and the results show that the model is superior to the other methods compared.

abnormal behavior recognitionCBAMattention mechanismResNet50

周璇、易剑平

展开 >

西安交通工程学院机械与电气工程学院 西安 710300

西安工程大学电子信息学院 西安 710600

异常行为识别 CBAM 注意力机制 ResNet50

陕西省教育厅科研项目

23JK0529

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(5)
  • 24