首页|基于双阶段多尺度生成对抗网络的图像复原方法

基于双阶段多尺度生成对抗网络的图像复原方法

扫码查看
针对人脸图像复原任务中对图像尺度信息利用不足和眼镜结构复原错误的问题,提出一种基于双阶段多尺度生成对抗网络复原模型.该模型第1阶段引入改进损失的U-Net粗重构网络,利用跳连接减少原始图像信息的丢失,融合3种不同的损失函数提高生成器的重构能力,采用双判别器考虑全局信息和局部信息,并提出一种混合域注意力机制用于关注图像的空间和通道信息.第2阶段的精修复网络构建了全新的特征增强模块,增强网络对细节信息的提取能力和对结构的表达能力,引入相对判别器,用于关注生成样本与真实样本之间的相对真实性,提高了生成质量和训练稳定性.实验结果表明,该方法能够复原各类图像缺失的情况,并能够有效复原佩戴眼镜的人脸图像,与其他方法相比,该方法的峰值信噪比、结构相似性和感知相似度评估等指标分别提升了3.81%、2.65%和0.45%.
Image restoration method based on two-stage multi-scale generative adversarial network
To solve the problem of insufficient use of image scale information and incorrect reconstruction of glasses structure in face image restoration task,a two-stage multi-scale generative adversarial network restoration model is proposed.In the first stage of the model,U-Net coarse reconstruction network with improved loss is introduced,three different loss functions are fused to improve the reconstruction ability of the generator,double discriminator is used to consider the global information and local information,and a mixed domain attention mechanism is proposed to focus on the spatial and channel information of the image.In the second stage,a new feature enhancement module is constructed to enhance the network's ability to extract details and express structures.The experimental results show that this method can recover all kinds of missing images and effectively restore face images wearing glasses.The peak signal-to-noise ratio,structural similarity and perceived similarity evaluation indexes of the method were improved by 3.81%,2.65%and 0.45%,respectively.

image restorationgenerate adversarial networkfeature enhancementtwo-stageU-Net

童俊毅、张银胜、张培琰、李长帅、孟祥源、单慧琳

展开 >

南京信息工程大学电子与信息工程学院 南京 210044

无锡学院电子信息工程学院 无锡 214105

图像复原 生成对抗网络 特征增强 双阶段 U-Net

国家自然科学基金2024年江苏省研究生创新项目

620712402311082401501

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(6)
  • 22