首页|基于DACNN的电机滚动轴承故障诊断方法

基于DACNN的电机滚动轴承故障诊断方法

扫码查看
针对强噪声、跨工况场景下数据分布差异导致传统卷积神经网络(CNN)模型泛化性能低、诊断能力不足的问题,提出一种基于并行卷积核和通道注意力机制的滚动轴承故障诊断方法.构造了带有不同尺度卷积核的并行网络结构,可以在抑制噪声干扰的同时有效提取出数据中的故障特征信息;融合通道注意力机制对卷积层特征提取能力进行增强,提升模型抗噪性能以及跨工况负载下的自适应诊断能力.利用凯斯西储大学轴承数据集训练并测试诊断效果,将该方法与其他方法进行了性能对比.结果表明,在跨工况不同负载情况下,所提方法的诊断平均准确率为97.3%,在不同信噪比噪声干扰情况下的诊断精度平均达93.8%,均高于其他比较方法,所提出的方法在复杂多变工况下具有良好的抗噪性能和泛化能力.
DACNN based fault diagnosis of rolling bearing in motor
In view of the problems of poor generalization ability and insufficient diagnostic capability of traditional convolutional neural network(CNN)model due to the data distribution discrepancy in strong noise environment and across working conditions,a fault diagnosis method for rolling bearings based on parallel convolution kernel and channel attention mechanism is proposed.Using this method,a parallel network structure with different convolution kernel scales was designed to effectively extract feature information from data while suppressing noise interference.Meanwhile,channel attention mechanism was added to enhance the feature extraction capability of the convolutional layer,and improve the anti-noise performance of the model and the adaptive ability in across working conditions.Diagnosis effects were trained and tested by using bearing data set of Case Western Reserve University.The proposed method was compared with peer approaches under different signal-to-noise ratio(SNR)cases and across working conditions,it was shown that the proposed method achieves an average diagnosis accuracy rate of 97.3%in across working conditions and in the variable noise experiment on the bearing dataset from Case Western Reserve University the diagnostic accuacy rate is beyond 93.8%,which are obviously higher than the competing methods;the proposed method have better noise resistance and generalization ability under complex and variable working conditions.

motorbearing fault diagnosisconvolutional neural networkattention mechanism

贾朱植、刘凯、刘佳鑫、祝洪宇、宋向金

展开 >

辽宁科技大学应用技术学院 鞍山 114051

辽宁科技大学电子与信息工程学院 鞍山 114051

江苏大学电气信息工程学院 镇江 212013

电机 轴承故障诊断 卷积神经网络 注意力机制

国家自然科学基金辽宁省教育厅基本科研项目

52007078JYTMS20230946

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(6)
  • 19