首页|动态场景下融合改进YOLOv7的视觉SLAM算法

动态场景下融合改进YOLOv7的视觉SLAM算法

Visual SLAM algorithm for fusing improved YOLOv7 in dynamic scenes

扫码查看
针对传统的视觉同步定位与地图构建(SLAM)在动态场景下容易受到运动物体干扰,导致位姿估计精准度和鲁棒性下降的问题,提出了一种基于目标检测网络的视觉SLAM算法.该算法通过在ORB-SLAM2的跟踪线程中新增动态特征点检测剔除模块,从而利用静态特征点进行位姿估计.首先,选择YOLOv7作为目标检测的主干网络,结合GhostNet轻量化卷积网络和具有SE注意力机制的卷积(Conv_SE),以有效地检测周围环境;其次,对检测到的物体进行分类处理,剔除动态物体特征点,通过几何约束的方法进一步检测和剔除潜在运动物体;最后,仅利用静态特征点进行特征匹配和位姿估计.在TUM数据集上的验证结果表明,与ORB-SLAM2相比,提出的算法在动态Walk序列下,绝对轨道误差(ATE)的均方根误差平均减少96.5%,在其他动态序列下也有改进效果.实验证明,该算法在动态场景下能够显著提升系统的定位精度和鲁棒性.
In response to the susceptibility of traditional visual simultaneous localization and mapping(SLAM)to disturbances from moving objects in dynamic scenes,a visual SLAM algorithm based on object detection networks is proposed.This algorithm introduces a module for detecting and rejecting dynamic feature points in the tracking thread of ORB-SLAM2,thereby utilizing static feature points for pose estimation.Firstly,YOLOv7 is chosen as the backbone network for object detection,combined with GhostNet lightweight convolutional networks and convolution with SE attention mechanism(Conv_SE)for effective environmental detection.Secondly,the detected objects are processed through classification,rejecting feature points associated with dynamic objects,and employing geometric constraints to further identify and remove potential moving objects.Finally,only static feature points are used for feature matching and pose estimation.Validation results on the TUM dataset indicate that compared to ORB-SLAM2,the proposed algorithm achieves an average reduction of 96.5%in the root mean square error(RMSE)of absolute trajectory error(ATE)in dynamic walk sequences and shows improvement in other dynamic sequences as well.Experimental evidence demonstrates that this algorithm significantly enhances the localization accuracy and robustness of the system in dynamic scenarios.

vision SLAMdynamic sceneobject detectionpose estimation

史涛、校诺政、丁垚、许金东

展开 >

天津理工大学电气工程与自动化学院 天津 300384

冀东油田勘探开发建设监督中心 唐山 063200

视觉SLAM 动态场景 目标检测 位姿估计

国家自然科学基金青年科学基金

62103298

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(7)
  • 23