首页|多策略融合的改进麻雀搜索算法及其AGV路径规划应用

多策略融合的改进麻雀搜索算法及其AGV路径规划应用

扫码查看
针对麻雀搜索算法(sparrow search algorithm,SSA)存在依赖初始种群分布,易于陷入局部最优解,以及迭代后期种群多样性减少等问题,提出一种多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA).首先,采用Sobol序列初始化种群,保证初始种群的多样性;其次,分别引入随机反向学习策略和螺旋觅食策略改进发现者位置更新公式和加入者位置更新公式,以增强算法的全局搜索能力和跳出局部最优解的能力;最后,引入柯西变异对可能陷入局部最优解的麻雀进行扰动.实验选取9个标准测试函数进行性能测试,实验结果表明,改进后的算法性能有较大提升.将ISSA应用于AGV(automated guided vehicle)路径规划,在3种地图环境下分别可以达到最优值13.135 6、28.834 5和44.364 9,寻优能力和稳定性较原算法有较大提升.
Improved sparrow search algorithm with multi strategy fusion and application in AGV path planning
This paper proposes an improved sparrow search algorithm(ISSA)with multi strategy fusion to address the issues of dependence on initial population distribution,susceptibility to local optima,and reduced population diversity in the later stages of iteration in sparrow search algorithm(SSA).Firstly,the population is initialized using Sobol sequences to ensure the diversity of the initial population.Secondly,random reverse learning strategy and spiral foraging strategy are introduced to improve the discoverer position update formula and the joiner position update formula,respectively,to enhance the algorithm's global search ability and ability to jump out of local optimal solutions.Finally,introducing Cauchy variation to perturb sparrows that may fall into local optima.Nine standard test functions were selected for performance testing in the experiment,and the results showed that the improved algorithm had a significant improvement in performance.Applying ISSA to Automated Guided Vehicle(AGV)path planning can achieve optimal values of 13.135 6,28.834 5,and 44.364 9 in three map environments,respectively.The optimization ability and stability of the algorithm are significantly improved compared to the original algorithm.

sparrow search algorithmrandom reverse learningspiral foragingtest functionAGV path planning

乐明皓、李凌

展开 >

沈阳化工大学信息工程学院 沈阳 110142

麻雀搜索算法 随机反向学习 螺旋觅食 测试函数 AGV路径规划

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(7)
  • 8