首页|融合上下文感知和背景探索的伪装目标检测方法

融合上下文感知和背景探索的伪装目标检测方法

Camouflage object detection method integrating context awareness and background exploration

扫码查看
伪装目标检测(camouflaged object detection,COD)旨在检测出与周围环境高度相似的伪装目标.针对目前COD方法中检测结果不完整、边缘细节模糊的问题,提出了一种融合上下文感知和背景探索(CABENet)的伪装目标检测模型.首先,该模型利用Swin-Transformer模型作为骨干网络,在多个尺度上提取全局上下文信息;其次,利用提出的注意力联级上下文感知模块扩大感受野,并从通道和空间两个维度增强网络的特征提取能力,再通过全连接解码器捕获隐藏对象的粗略位置图;最后,通过融合注意力机制的背景探索模块从背景信息中挖掘目标的边缘线索,加强伪装目标边缘特征的提取.在 CHA-MELEON、CAMO 以及 COD10K 数据集上的实验结果表明,该方法在 4个评估指标上的性能优于其他10个具有代表性的模型,在COD10K数据集上,平均绝对误差降至了0.026.
Camouflaged object detection(COD)aims to identify objects that are highly similar to their surrounding environment.To address the issues of incomplete detection results and blurred edge details in current COD methods,a camouflaged object detection method that integrates context awareness and background exploration(CABENet)is proposed.Firstly,the model employs the Swin-Transformer as the backbone network to extract global context information at multiple scales.Secondly,it utilizes a proposed attention-based hierarchical context-aware module to enlarge the receptive field,enhancing feature extraction capabilities from both channel and spatial dimensions,followed by a fully connected decoder to capture coarse position maps of hidden objects.Lastly,by integrating an attention mechanism,the background exploration module explores edge clues from background information,enhancing the extraction of edge features of camouflaged objects.Experimental results on the CHAMELEON,CAMO,and COD10K datasets demonstrate that this method outperforms ten representative models on four evaluation metrics.On the COD10K dataset,the mean absolute error(MAE)is reduced to 0.026.

camouflaged object detectioncontext awarenessattention mechanismbackground exploration

陈世洁、范李平、余肖生、王东娟

展开 >

三峡大学计算机与信息学院 宜昌 443002

国网宜昌供电公司 宜昌 443000

伪装目标检测 上下文感知 注意力机制 背景探索

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(8)
  • 3