首页|基于S变换和深度学习的多特征融合的电压暂降源识别方法

基于S变换和深度学习的多特征融合的电压暂降源识别方法

Multi-feature fusion based on S-transform and deep learning for voltage transient source identification

扫码查看
随着工业和科技的发展,用户对电压暂降的关注度不断提高,识别电压暂降产生的原因愈显得越来越重要.针对引起电压暂降的单一暂降源和复合暂降源,提出了将S变换提取特征和深度学习自动提取特征相结合的识别方法.首先利用数值模型框架产生单一暂降源和复合暂降源数学模型,进而得到9种故障类别的暂降数据集并作为原始数据,其次对原始数据进行处理,即在标准的S变换基础上引入两个调节因子得到改进的S变换,得到S变换数据,引入16个指标对S变换数据进行特征提取并作为指标特征,将上述原始数据和S变换数据作为模型输入,利用卷积神经网络(convolutional neural net-work,CNN)对暂降数据进行空间特征提取,同时将数据分为多个一维向量输入到双向长短期记忆网络(bi-directional long-short-term memory networks,Bi-LSTM)提取时序特征,最后建立指标特征、空间特征以及时序特征的多特征融合的S-CNN-LSTM识别模型.仿真结果表明,未经过特征融合与经过多特征融合的识别准确率分别为98.36%、99.08%,说明多特征融合能够提高识别准确率.
With the development of industry and science and technology,the user's concern about voltage dips is increasing,and it is more and more important to identify the causes of voltage dips.Aiming at the single and composite sources of voltage dips,this paper proposes a recognition method that combines the S-transform feature extraction and deep learning automatic feature extraction.Firstly,the numerical modeling framework is used to generate mathematical models of single and composite transient sources,and then the transient datasets of nine fault categories are obtained and used as the original data,and secondly,the original data are processed,i.e.,two adjustment factors are introduced to obtain the improved S-transform based on the standard S-transform to obtain the S-transform data,and 16 metrics are introduced to extract features from the S-transform data and are used as the metrics'features.The original data and the S-transformed data are used as model inputs,and the spatial features are extracted from the transient data by using convolutional neural network(CNN),while the data are divided into several one-dimensional vectors and input into bi-directional long short-term memory networks(Bi-LSTM),which is the most suitable method to extract the spatial features of the S-transformed data.Memory networks(Bi-LSTM)to extract temporal features,and finally establish a multi-feature fusion S-CNN-LSTM recognition model with indicator features,spatial features and temporal features.The simulation results show that the recognition accuracies without feature fusion and after multi-feature fusion are 98.36%and 99.08%,respectively,indicating that multi-feature fusion can improve the recognition accuracy.

voltage transient sourceimproved S-transformCNN-LSTM modelfeature fusion

张峰、陈雷

展开 >

东北石油大学电气信息工程学院 大庆 163000

电压暂降源 改进S变换 CNN-LSTM模型 特征融合

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(8)
  • 17