首页|基于多维特征与优化SVM在高压断路器故障分类中的应用

基于多维特征与优化SVM在高压断路器故障分类中的应用

扫码查看
针对利用电流信号进行高压断路器故障分类过程中,采集电流信号原始特征提取种类单一,故障识别率低和分类性能退化的问题,提出一种基于多维特征与支持向量机(support vector machine,SVM)相结合的故障分类方法.首先,提取分闸电流信号关键时间、电流幅值作为局部特征,提取电流信号的全局特征组成多维特征向量,构建断路器操作过程的电流联合原始特征集;其次,为消除冗余特征信息,使用主成分分析法(principal component analysis,PCA)降维后构建最终特征向量集合;最后,使用粒子群算法(particle swarm algorithm,PSO)优化支持向量机参数设置问题,对断路器进行故障分类.试验结果表明,采用本文提出的方法识别准确率较高,具有实际工程应用价值.
Application of multidimensional feature-based and optimized SVM in high-voltage circuit breaker fault classification
Aiming at the use of current signals for high-voltage circuit breaker fault classification process,the acquisition of current signals raw feature extraction of a single type,low fault recognition rate and degradation of classification performance,this paper proposes a fault classification method based on the combination of multidimensional features and support vector machine(SVM).Firstly,the critical time of the tripping current signal and the current amplitude are extracted as local features,and the global features of the current signal are extracted to form a multi-dimensional feature vector,which constructs a joint original feature set of the current of the circuit breaker operation process.Secondly,in order to eliminate redundant feature information,the final set of feature vectors is constructed after dimensionality reduction using principal component analysis(PCA).Finally,particle swarm algorithm(PSO)is used to optimize the support vector machine parameter setting problem for fault classification of circuit breakers.The experimental results show that the recognition accuracy is high using the method proposed in this paper,which has practical engineering application value.

high-voltage circuit breakerfeature vectorparticle swarm algorithmsupport vector machine

杨帅、张岩、梁永春、王昭雷、符鑫哲、王子昕、任泽瑄

展开 >

河北科技大学电气工程学院 石家庄 050091

国网河北省电力有限公司超高压分公司 石家庄 050070

高压断路器 特征向量 粒子群算法 支持向量机

国家自然科学基金国家自然科学基金河北省自然科学基金河北省高等学校科学技术研究项目国家级大学生创新创业训练计划项目

5187707061876059E2019208443ZD2021202202310082004

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(8)
  • 17