首页|基于改进YOLOv8n-Pose的轨道作业人员跨轨安全动作识别

基于改进YOLOv8n-Pose的轨道作业人员跨轨安全动作识别

扫码查看
针对轨道作业人员跨轨安全动作监督方法存在效率低、漏检率高等问题,引入改进的人体姿态估计算法YOLOv8n-Pose对跨轨安全动作进行识别和监督.对YOLOv8n-Pose算法改进方法为在网络中添加注意力机制并轻量化网络结构,并改进网络的bbox损失函数和关键点损失函数,以提高网络的识别精度和速度.使用高斯滤波和ColorJitter算法对自制数据集增强.在训练前使用遗传算法对训练超参数进行自适应调整,在训练时使用迁移学习和知识蒸馏方法,提高网络训练速度、识别精度和泛化能力.将训练好的模型对轨道现场作业人员图像进行检测,可成功识别出作业人员姿态并根据关键点位置信息识别安全动作,人体关键点识别精确度为94.3%,推理速度为238.1 fps,验证模型改进研究取得了有益效果,提高了模型识别精度、识别速度和鲁棒性.
Safety actions recognition of rail workers crossing the track based on improved YOLOv8n-Pose
Aiming at the problems of low efficiency and high missed detection rate of the rail workers'cross-track safety actions supervision method,an improved human pose estimation algorithm YOLOv8n-Pose is introduced to detect and supervise the cross-track safety actions.The improvement method of YOLOv8n-Pose algorithm is to add an attention mechanism to the network and lighten the network structure,and improved the bbox loss function and the keypoint loss function of the network in order to improve the network's recognition accuracy and speed.The self-made dataset is enhanced by Gaussian filtering and ColorJitter algorithm.Genetic algorithm is used to adaptively adjust the training hyperparameters before training,and migration learning and knowledge distillation methods are used during training to improve the network training speed,recognition accuracy and generalization ability.The trained model is used to detect the images of the workers,which can successfully recognize the workers'keypoints and identify the safety actions based on the keypoints.The human keypoints recognition accuracy is 94.3%at the speed of 238.1 fps,which verifies that the model improvement research has achieved beneficial effects and improved recognition accuracy,recognition speed and robustness of the model.

human pose estimationdeep learningYOLOv8n-Poseobject detection

叶彦斐、胡龙癸、张成龙

展开 >

河海大学人工智能与自动化学院 南京 211106

人体姿态估计 深度学习 YOLOv8n-Pose 目标检测

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(8)
  • 5