首页|基于变分模态分解的光伏功率预测方法

基于变分模态分解的光伏功率预测方法

Photovoltaic power forecasting based on variational mode decomposition

扫码查看
为解决光伏功率预测时不确定性强、影响因素较多等问题,提出一种基于变分模态分解(variational mode decomposi-tion,VMD)的光伏功率预测方法.首先,对原始的光伏功率数据进行变分模态分解分解,分解为不同频率较平稳的模态分量;其次,计算不同模态分量的排列熵,根据排列熵将不同分量进一步合并,并在考虑不同影响因素(温度、辐射等)的条件下,分别将不同频率模态分量(intrinsic mode function,IMF)经过双向门控循环单元-自注意力(bi-directional gated recurrent unit-attention,BiGRU-Attention)模型进行预测;最后,将不同频率分量的预测结果叠加重构得到最终预测值.对中国某地区光伏功率数据进行实验测试,实验结果表明,提出的模型相较于BiGRU模型,平均绝对百分比误差(MAPE)、均方误差(RMSE)和平均绝对误差(MAE),分别降低了11.25%、8.51%和11.92%,其预测误差得到显著降低.
To solve the problems of strong uncertainty and multiple influencing factors in photovoltaic power prediction,this paper proposes a photovoltaic power prediction method based on variational mode decomposition(VMD).Firstly,the original photovoltaic power data is subjected to variational mode decomposition,which decomposes it into modal components with relatively stable frequencies.Secondly,the permutation entropy of different modal components is calculated,and the different components are further merged based on the permutation entropy.Under the condition of considering different influencing factors(temperature,radiation,etc.),the different frequency modal components are predicted by the bi-directional gated recurrent unit-attention(BiGRU-Attention)model.Finally,the predicted results of different frequency components are superimposed and reconstructed to obtain the final predicted value.Experimental tests were conducted on photovoltaic power data in a certain region of China,and the results showed that compared to the BiGRU model,the model proposed in this paper reduced the mean absolute percentage error(MAPE),mean square error(RMSE),and mean absolute error(MAE)by 11.25%,8.51%,and 11.92%,respectively,and significantly reduced its prediction error.

deep learningphotovoltaic power forecastVMDGRU networkattention mechanism

王世青、赵许许、廖俊龙、詹鑫、王建红、邹德凡、杨春萍

展开 >

国网新疆电力有限公司乌鲁木齐供电公司 乌鲁木齐 830001

华北电力大学电气与电子工程学院 北京 102206

深度学习 光伏功率预测 VMD GRU网络 注意力机制

国网新疆电力有限公司科技项目

5230WJ230007

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(9)