首页|基于U-Net的启闭机钢丝绳缺陷定位方法研究

基于U-Net的启闭机钢丝绳缺陷定位方法研究

扫码查看
启闭机钢丝绳在水电站运行中用于闸门提升,对水电生产的安全稳定至关重要.然而,传统的人工检测方法存在效率低、准确率差等问题.利用钢丝绳监测图像进行缺陷定位,不仅可以大幅提高检测效率,还能够实现高准确率的缺陷定位.提出了一种基于U-Net结构的方法,通过编码器提取不同尺度的图像特征,再利用解码器将这些特征还原为缺陷定位标签,从而实现钢丝绳的缺陷定位.实验结果表明,所提方法明显优于传统卷积网络,且在Dice系数、交并比(IoU)和Hausdorff距离3个评价指标上分别优于对比算法0.29、0.23以及0.004 7,能够实现更准确的钢丝绳缺陷定位.
Research on steel wire rope breakage fault localization based on U-Net
The wire ropes of the hoisting machine are used for gate lifting in hydropower stations,which is crucial for the safe and stable production of hydropower.However,traditional manual inspection methods have issues such as low efficiency and poor accuracy.Utilizing wire rope monitoring images for defect localization can not only significantly improve inspection efficiency but also achieve highly accurate defect localization.This paper proposes a U-Net-based method that extracts multi-scale image features through an encoder and then restores these features into defect localization labels using a decoder,thereby realizing defect localization in wire ropes.The experimental results show that the proposed method significantly outperforms traditional fully convolutional networks and surpasses the comparison algorithms by 0.29,0.23,and 0.004 7 in terms of the Dice coefficient,IoU,and Hausdorff distance,respectively,enabling more accurate wire rope defect localization.

steel wiredefect localizationU-net networkdeep learning

邹磊、冯治国、梁鹏翔、李昂、牛天宇

展开 >

国能大渡河检修安装有限公司 成都 610041

四川大学电气工程学院 成都 610065

钢丝绳 缺陷定位 U-Net网络 深度学习

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(9)