首页|基于多传感器的干式变压器故障诊断系统设计

基于多传感器的干式变压器故障诊断系统设计

扫码查看
为实现对电力系统中的干式变压器的状态监测及早期故障诊断,结合声发射传感器、温度传感器、湿度传感器等多类传感器对干式变压器进行状态监测和故障诊断,开发一套基于LabVIEW的干式变压器故障诊断系统.针对声发射、温度、湿度等数据,采用基于金豺优化算法的变分模态分解方法,提取出数据趋势,根据趋势的变化规律识别出潜在的早期故障;针对高采样率的声发射数据,采用基于多尺度Teager能量算子(TEO)的特征提取方法,提取出早期故障的微弱特征.仿真和应用表明,系统对信噪比为-10 dB左右的微弱早期故障信号具有优越的识别和诊断能力.系统的优点是结合声发射对材料劣化的敏感性和趋势及微弱特征分析方法,可在故障早期进行预警,而无须完全依赖指标阈值.
Design of fault diagnosis system for dry type transformer based on multi sensor
In order to realize the condition monitoring and early fault diagnosis of the dry-type transformer in the power system,combined with acoustic emission sensors,temperature sensors,humidity sensors and other kinds of sensors to carry out the condition monitoring and fault diagnosis of the dry-type transformer,a set of dry-type transformer fault diagnosis system based on LabVIEW is developed.For acoustic emission,temperature,humidity and other data,the variational mode decomposition method based on Golden jackal optimization algorithm is used to extract the data trend,and the potential early fault is identified according to the change law of the trend.Aiming at the high sampling rate of acoustic emission data,a feature extraction method based on multi-scale Teo is used to extract the weak features of early faults.Simulation and application have shown that this system has superior recognition and diagnostic capabilities for weak early fault signals with a signal-to-noise ratio of around-10 dB.The advantage of this system is that,combined with the sensitivity and trend of acoustic emission to material degradation and the analysis method of weak characteristics,early warning can be carried out in the early stage of failure,without completely relying on the index threshold.

dry type transformeracoustic emission sensorLabVIEWvariational mode decomposition

韩文文、谭政、张昆、毛雕、胡立忠

展开 >

三峡金沙江云川水电开发有限公司 昆明 651512

干式变压器 声发射传感器 LabVIEW 变分模态分解

中国长江电力股份有限公司科研项目

Z522302038

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(9)