首页|复杂室内环境下轻量级手势识别算法

复杂室内环境下轻量级手势识别算法

Lightweight gesture recognition algorithm for complex indoor environments

扫码查看
针对室内环境背景复杂、手部多样、识别角度多变等因素导致手势识别算法检测率低,算法复杂难以在移动端设备部署,提出了一种SA-YOLOv8手势识别算法.首先,利用改进后的CB-ShuffleNet V2轻量级网络作为主干网络提取手势特征,在保证准确率的同时降低模型参数与计算量,方便模型部署在智能家居设备,保证识别的实时性.其次,在Neck层引入渐进特征金字塔网络(AFPN)实现手势信息的多尺度特征融合,通过自适应空间融合操作避免复杂因素干扰,保留手部细节信息,提高模型鲁棒性.最后,在损失函数阶段引入Shape-IoU损失函数,增加模型对非规则手势与远距离小尺度手势识别的敏感力与准确性.实验结果表明,SA-YOLOv8在ASL-6与完整ASL数据集上平均精度均值(mAP)mAP@0.5分别达到99.80%与99.83%,相较于原始YOLOv8模型提高了4.47%与4.5%,模型参数量下降80.18%,计算量减少77.46%.改进后的算法在手势识别方面效果提升明显,且模型更加轻量,适合部署在移动端设备中.
To address the low detection rates in gesture recognition algorithms caused by complex indoor environments,diverse hand appearances,and variable recognition angles,and to facilitate deployment on mobile devices,we propose a novel SA-YOLOv8 gesture recognition algorithm.Initially,an improved CB-ShuffleNetV2 lightweight network is utilized as the backbone for extracting gesture features,ensuring accuracy while reducing model parameters and computational load,facilitating real-time recognition on smart home devices.Subsequently,an asymptotic feature pyramid network(AFPN)is integrated into the Neck layer for multi-scale feature fusion of gesture information,employing adaptive spatial fusion operations to mitigate interference from complex factors and preserve detailed hand information,thereby enhancing the model's robustness.Finally,the Shape-IoU loss function is introduced during the loss calculation phase,increasing the model's sensitivity and accuracy for irregular and small-scale gestures at a distance.The experiments demonstrate that SA-YOLOv8 achieves an average detection precision mAP@0.5 of 99.80%on the ASL-6 dataset and 99.83%on the full ASL dataset,marking a 4.47%and 4.5%improvement over the original YOLOv8 model,along with an 80.18%reduction in parameter volume and a 77.46%decrease in computational demand.The improved algorithm shows a significant enhancement in gesture recognition performance and is more lightweight,making it suitable for deployment on mobile devices.

gesture recognitionYOLOv8smart homelightweight networkreal-time

师红宇、刘蒙蒙、杜文、张哲于、李怡

展开 >

西安工程大学计算机科学学院 西安 710600

手势识别 YOLOv8 智能家居 轻量级网络 实时性

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)