首页|复杂室内环境下轻量级手势识别算法

复杂室内环境下轻量级手势识别算法

扫码查看
针对室内环境背景复杂、手部多样、识别角度多变等因素导致手势识别算法检测率低,算法复杂难以在移动端设备部署,提出了一种SA-YOLOv8手势识别算法.首先,利用改进后的CB-ShuffleNet V2轻量级网络作为主干网络提取手势特征,在保证准确率的同时降低模型参数与计算量,方便模型部署在智能家居设备,保证识别的实时性.其次,在Neck层引入渐进特征金字塔网络(AFPN)实现手势信息的多尺度特征融合,通过自适应空间融合操作避免复杂因素干扰,保留手部细节信息,提高模型鲁棒性.最后,在损失函数阶段引入Shape-IoU损失函数,增加模型对非规则手势与远距离小尺度手势识别的敏感力与准确性.实验结果表明,SA-YOLOv8在ASL-6与完整ASL数据集上平均精度均值(mAP)mAP@0.5分别达到99.80%与99.83%,相较于原始YOLOv8模型提高了4.47%与4.5%,模型参数量下降80.18%,计算量减少77.46%.改进后的算法在手势识别方面效果提升明显,且模型更加轻量,适合部署在移动端设备中.
Lightweight gesture recognition algorithm for complex indoor environments
To address the low detection rates in gesture recognition algorithms caused by complex indoor environments,diverse hand appearances,and variable recognition angles,and to facilitate deployment on mobile devices,we propose a novel SA-YOLOv8 gesture recognition algorithm.Initially,an improved CB-ShuffleNetV2 lightweight network is utilized as the backbone for extracting gesture features,ensuring accuracy while reducing model parameters and computational load,facilitating real-time recognition on smart home devices.Subsequently,an asymptotic feature pyramid network(AFPN)is integrated into the Neck layer for multi-scale feature fusion of gesture information,employing adaptive spatial fusion operations to mitigate interference from complex factors and preserve detailed hand information,thereby enhancing the model's robustness.Finally,the Shape-IoU loss function is introduced during the loss calculation phase,increasing the model's sensitivity and accuracy for irregular and small-scale gestures at a distance.The experiments demonstrate that SA-YOLOv8 achieves an average detection precision mAP@0.5 of 99.80%on the ASL-6 dataset and 99.83%on the full ASL dataset,marking a 4.47%and 4.5%improvement over the original YOLOv8 model,along with an 80.18%reduction in parameter volume and a 77.46%decrease in computational demand.The improved algorithm shows a significant enhancement in gesture recognition performance and is more lightweight,making it suitable for deployment on mobile devices.

gesture recognitionYOLOv8smart homelightweight networkreal-time

师红宇、刘蒙蒙、杜文、张哲于、李怡

展开 >

西安工程大学计算机科学学院 西安 710600

手势识别 YOLOv8 智能家居 轻量级网络 实时性

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)