首页|粉尘环境下的捞渣机刮板状态监测算法研究

粉尘环境下的捞渣机刮板状态监测算法研究

扫码查看
针对某发电厂捞渣机状态监测系统设计需求,将机器视觉技术应用到捞渣机状态监测系统中,设计了一种粉尘环境下的捞渣机刮板状态监测算法.该监测算法基于轻量化的YOLOv5s-SCB目标检测模型,实现了对电厂捞渣机刮板异常状态的监测.由于捞渣机所处环境粉尘较大,在YOLOv5s-SCB模型的基础上,前端引入DehazeFormer去雾网络,并对其进行了改进,将尺度、空间以及通道3种注意力融合到DehazeFormer网络中来提高其去雾能力.此外为了进一步提升检测精度,在监测算法中加入了RAFT光流网络来提取刮板的运动特征,利用RAFT光流网络提取的运动特征与YOLOv5s-SCB提取的卷积特征进行特征融合.最终,通过选取400副粉尘图像进行刮板监测测试,误检率为0%,漏检率为4.9%,实验表明,该模型具有良好的准确性和泛化能力,达到了预期目标.
Research on monitoring algorithm for scraper of slag collector in dust environment
According to the design requirements of a slag rake monitoring system for a certain power plant,machine vision technology is applied to design an algorithm for monitoring slag rake scrapers in dusty environments.The monitoring algorithm utilizes a lightweight YOLOv5s-SCB object detection model to detect abnormal states of the slag rake scrapers in the power plant.Due to the high dust levels in the environment where the slag rake operates,a DehazeFormer dehazing network is introduced at the front end of the YOLOv5s-SCB model and enhances by integrating scale,spatial,and channel attentions.Furthermore,to further enhance detection accuracy,the RAFT optical flow network is incorporated into the monitoring algorithm to extract motion characteristics of the scrapers.These motion features extracted by RAFT are fused with the convolutional features extracted by YOLOv5s-SCB.Finally,testing on 400 dust-laden images for scraper monitoring shows a false detection rate of 0%and a miss detection rate of 4.9%.Experimental results demonstrate that the model achieves high accuracy and generalization,meeting the expected goals.

object detectionYOLOv5s-SCBenhanced DehazeFormer dehazing networkRAFT optical flow network

刘洲、李刚、姬晓飞、周飞

展开 >

江苏国信靖江发电有限公司 靖江 214500

沈阳航空航天大学自动化学院 沈阳 110136

目标检测 YOLOv5s-SCB 改进的DehazeFormer去雾网络 RAFT光流网络

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)