首页|基于自编码器无监督学习结构损伤量化检测研究

基于自编码器无监督学习结构损伤量化检测研究

Research on unsupervised structural damage quantification detection based on autoencoder

扫码查看
结构健康检测指通过实时或周期性监测评估工程结构的健康状态,深度学习方法因能从原始数据中提取高层特征而备受关注.针对实际应用中损伤类别的多样性,缺乏对损伤状态进行定量分析,提出了部分跳跃卷积自编码器损伤判断量化方法.使用卷积自编码器处理结构响应,将高维数据降维至低维特征空间,通过重构误差设定损伤指标,以判断健康状态;基于低维特征构建损伤系数,实现结构损伤量化.利用国际结构控制协会与美国土木工程协会(IASC-ASCE)IASC-ASC Ⅰ和IASC-ASCE Ⅱ数据集验证了算法在损伤判断和量化方面的有效性.实验结果表明,损伤指标对大部分损伤状态的判定准确率达到100%,个别损伤状态下的准确率为96%,对不同损伤状态的量化均符合预期.
Structural health monitoring refers to the evaluation of the health condition of engineering structures through real-time or periodic monitoring.Deep learning methods have gained attention due to their ability to extract high-level features from raw data.However,the diversity of damage types in practical applications and the lack of quantitative analysis for damage states remain challenging.In this paper,a partial skip-connected convolutional autoencoder-based approach for damage assessment and quantification is proposed.This method utilizes a convolutional autoencoder to process structural responses,reducing high-dimensional data to a low-dimensional feature space.A damage index is defined based on reconstruction error to assess health status,while a damage coefficient constructed from the low-dimensional features enables quantitative damage assessment.The effectiveness of the algorithm in damage detection and quantification is validated using the IASC-ASCE benchmark structures Ⅰ and Ⅱ datasets.Experimental results demonstrate that the damage index achieves 100%accuracy in identifying most damage states,with 96%accuracy in certain specific cases,and that the quantification aligns well with expected values across different damage states.

structural health monitoringconvolutional autoencoderdamage quantification

刘琦、宁立远、戴华林、王家兴、东尧

展开 >

天津城建大学计算机与信息工程学院 天津 300384

结构健康检测 卷积自编码器 损伤量化

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)