首页|残差全连接神经网络在输电塔基边坡风险评价中的应用

残差全连接神经网络在输电塔基边坡风险评价中的应用

Application of residual neural networks in risk assessment of transmission tower foundation slopes

扫码查看
现有输电塔边坡风险评估方法偏重静态地质特征与环境因素,忽略塔基与边坡的耦合作用,难以全面评估输电塔边坡风险性.为解决这一问题,综合考虑了边坡的危险性和健康性因素,如边坡高度、坡度、塔基与边坡距离、基面情况等,并通过增强搜索策略的贝叶斯优化算法优化残差全连接神经网络,构建了一种基于贝叶斯优化残差全连接神经网络的输电塔基边坡风险评价模型.并设置BP神经网络、深度全连接神经网络以及未做优化的残差全连接神经网络作为对照组,实验结果表明,该模型性能显著优于其他模型,其中危险性和健康性评价中的平均绝对误差(MAE)约为0.010 2、0.008 1,均方根误差(RMSE)为0.057 3、0.055 1,平均相对误差(MAPE)低至1.475%和1.451%.该模型能够在日常巡检和降雨情况下提供有效的分级预警,显著提高输电塔边坡风险评估的准确性和预警能力.
The existing risk assessment methods for transmission tower slopes mainly focus on static geological characteristics and environmental factors,overlooking the coupling effect between the tower foundation and the slope.These methods also lack effective response and early warning mechanisms under extreme weather conditions,making it challenging to comprehensively evaluate slope stability.To address this issue,this study integrates slope risk and health factors—such as slope height,slope angle,distance between the tower foundation and the slope,and base conditions—and employs an enhanced Bayesian optimization algorithm to optimize a residual fully connected neural network.A Bayesian-optimized RFCN-based risk assessment model for transmission tower slopes was developed.Comparative experiments were conducted using BP neural networks,deep fully connected neural networks,and unoptimized RFCN as baseline models.The results demonstrated that the proposed model outperformed the others,achieving MAE of approximately 0.010 2 and 0.008 1,RMSE of 0.057 3 and 0.055 1,and MAPE as low as 1.475%and 1.451%for risk and health assessments,respectively.The model provides effective graded early warnings under routine inspections and rainfall,enhancing the accuracy and early warning capability of transmission tower slope risk assessment.

residual neural networkBayesian optimizationtransmission tower foundation slopesrisk assessmentrain-fall-induced landslide early warning

芮焘、段国勇、王彦海、邹英杰、郑武略

展开 >

三峡大学湖北省输电线路工程技术研究中心 宜昌 443002

三峡大学电气与新能源学院 宜昌 443002

中国南方电网有限责任公司超高压输电公司广州局 广州 510600

残差全连接神经网络 贝叶斯优化 输电塔基边坡 风险评价 降雨滑坡预警

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)