首页|基于异源特征融合的电力设备分割与异常发热检测

基于异源特征融合的电力设备分割与异常发热检测

Segmentation and anomalous heat detection of power equipment based on heterogeneous feature fusion

扫码查看
为了从复杂的变电站场景中准确检测电力设备的异常发热区域,提出了一种融合红外与可见光异源图像特征的电力设备异常发热检测方法.首先,构建基于语义边缘信息协同增强的电力设备语义分割网络,通过构建多级跨模态特征融合模块,采用分层融合策略整合跨模态特征,从而提升模型对图像的理解能力.在特征解码阶段引入边缘信息监督模块,以增强分割边缘的清晰度与连续性,准确去除图像中的背景区域.在此基础上,提出一种基于注意力机制与残差信息优化的异常发热检测方法,设计了多级特征融合与注意力增强模块,分析红外与可见光前景特征,引入图像的残差信息,进一步加强对异常发热区域的探查能力并显著提升检测精度.通过现场采集的数据并进行手工标注,自建数据集并与多种先进算法进行了对比实验,语义分割的平均准确率(mAcc)和平均交并比(mIoU)分别达到97.2%和88.9%,设备异常发热区域检测的E-meas-ure指标较次优算法提升2.6%.实验结果表明,所提出的方法能够高效、准确地检测复杂场景中的电力设备异常发热区域.
To accurately detect abnormal heating regions of power equipment in complex substation scenarios,this paper proposes a method for detecting abnormal heating of power equipment by fusing heterogeneous features from infrared and visible images.First,a semantic segmentation network for power equipment is constructed,enhanced through semantic edge information collaboration.A multi-level cross-modal feature fusion module is designed,adopting a hierarchical fusion strategy to integrate cross-modal features,thereby improving the model's ability to comprehend images.During the feature decoding stage,an edge information supervision module is introduced to enhance the clarity and continuity of segmentation boundaries,effectively removing background regions from the images.On this basis,an abnormal heating detection method optimized by attention mechanisms and residual information is proposed.A multi-level feature fusion and attention enhancement module is designed to analyze infrared and visible light foreground features,and residual information from the images is incorporated to further improve the detection capability and significantly enhance detection accuracy for abnormal heating regions.Using field-collected and manually annotated data,a self-built dataset was compared against multiple state-of-the-art algorithms.The proposed method achieved mAcc and mIoU scores of 97.2%and 88.9%,respectively,for semantic segmentation,and the E-measure for abnormal heating detection improved by 2.6%compared to the next-best algorithm.Experimental results demonstrate that the proposed method can efficiently and accurately detect abnormal heating regions of power equipment in complex scenarios.

heterogeneous feature fusionsemantic segmentationpower equipmentabnormal heating detection

赵欣洋、刘志远、赵宇嘉、尹琦云、陆洪建、李庆武

展开 >

国网宁夏电力有限公司超高压公司 银川 750000

国网宁夏电力有限公司 银川 750011

河海大学信息科学与工程学院 常州 213200

异源特征融合 语义分割 电力设备 异常发热检测

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)