首页|基于改进YOLOv5的陶瓷基片缺陷识别

基于改进YOLOv5的陶瓷基片缺陷识别

Defect identification on ceramic substrates based on improved YOLOv5

扫码查看
陶瓷基片的缺陷严重影响电子器件的性能,为提高缺陷检测的准确性,基于超声显微镜扫描的陶瓷基片检测方法,提出了一种改进YOLOv5的神经网络算法.根据超声检测具有穿透性的优点,增加一条新的主干网络综合陶瓷基片表面与内部的回波信息,同时使用极化注意力机制进行特征融合提高检测的精确度,并融合了轻量化网络减少参数量.进行了超声显微镜扫描陶瓷基片实验分析缺陷特征并制作数据集,在此数据集上,FusionPol-YOLOv5模型对9种缺陷检测的精确率达到88.3%,平均精度均值(mAP)mAP@0.5达到91.7%,可以极大减少陶瓷基片检测的人力物力损耗和成本.
The defects of ceramic substrates have a significant impact on the performance of electronic devices.To enhance the accuracy of defect detection,in this paper,based on the detection method of ceramic substrates by ultrasonic microscopy scanning,an improved neural network algorithm of YOLOv5 is proposed.Taking advantage of the penetrability of ultrasonic detection,a new backbone network is added to comprehensively integrate the echo information from both the surface and interior of the ceramic substrates.Meanwhile,a polarization attention mechanism is employed for feature fusion to improve the detection precision,and a lightweight network is integrated to reduce the number of parameters.Experiments of ultrasonic microscopy scanning on ceramic substrates were carried out to analyze the defect characteristics and create a dataset.On this dataset,the FusionPol-YOLOv5 model proposed in this paper achieves an precision of 88.3%for the detection of 9 types of defects,with an mAP@0.5 of 91.7%.It can significantly reduce the human and material resources consumption and costs in the detection of ceramic substrates.

defect identificationultrasonic detectionattention mechanismfeature fusion

王鹏飞、李海洋、廖健标、林骁

展开 >

中北大学信息与通信工程学院 太原 030051

中国科学院声学研究所东海研究站 上海 201815

浙江新纳材料科技股份有限公司 金华 322118

缺陷识别 超声检测 注意力机制 特征融合

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(11)