首页|基于径向基神经网络代理模型的贝叶斯损伤识别方法研究

基于径向基神经网络代理模型的贝叶斯损伤识别方法研究

扫码查看
提出了一种将径向基神经网络作为代理模型用于贝叶斯框架的损伤识别方法.首先采用拉丁超立方抽样技术,选取一定数量的结构输入输出样本,训练出一个径向基神经网络.然后将其用于基于马尔科夫链蒙特卡洛抽样的贝叶斯损伤识别方法.其中抽样方法采用吉布斯抽样.数值算例显示,在考虑测量误差的情况下,提出的方法能准确识别出简支梁的损伤,有效避免了损伤识别反问题的不适定性.其计算效率较传统的方法提高了数十倍,是一种很有潜力的损伤识别方法.
Research on Bayesian Damage Identification Method Based on Radial Basis Neural Network Surrogate Model
A method was proposed to use radial basis function neural networks as surrogate models for damage iden-tification within the Bayesian framework.Initially,Latin hypercube sampling was employed to select a specific number of structural input-output samples,leading to the training of a radial basis function neural network.Subsequently,this network was applied to a Bayesian damage identification method based on Markov chain Monte Carlo sampling.Gibbs sampling was utilized as the sampling method.Numerical examples demonstrated that,considering measurement er-rors,the proposed method accurately identified damage in simply supported beams,effectively avoiding the ill-posed na-ture of the inverse problem in damage identification.The computational efficiency of this method was improved by sev-eral orders of magnitude compared to traditional approaches,making it a highly promising damage identification method.

radial basis neural networkdamage identificationMarkov Chain Monte CarloGibbs sampling

卢小丽、文韬、郭丽丽

展开 >

武汉工程科技学院机械与工程学院,武汉 430200

径向基神经网络 损伤识别 马尔科夫链蒙特卡罗 吉布斯抽样

2022湖北省教育厅科学技术研究计划指导性项目

B2022387

2024

建材世界
武汉理工大学

建材世界

影响因子:0.869
ISSN:1674-6066
年,卷(期):2024.45(2)
  • 17