首页|基于网格搜索优化的LSTM多轴疲劳寿命预测方法

基于网格搜索优化的LSTM多轴疲劳寿命预测方法

扫码查看
传统的多轴疲劳寿命预测模型通常局限于特定的材料和载荷条件.为了应对这种不足,本研究采用深度学习方法处理不同的多轴疲劳加载条件,使用网格搜索优化算法确定长短期记忆网络(LSTM)深度学习模型的学习率、隐藏层数和迭代次数 3 个超参数的最优组合,使深度学习模型达到最佳预测性能.使用该方法对纯钛、SS 316L、TC4铝合金 3种材料进行寿命预测,结果均在 2倍误差带以内,且 1.5 倍误差带内的预测结果占比较高.利用 2组调整过的数据集对所提方法的外推能力进行测试,结果表明,所提方法对未知加载路径的外推能力较好.基于网格搜索的LSTM多轴疲劳寿命预测方法可用于各种材料、各种加载路径的多轴疲劳寿命预测.
Grid Search Optimized LSTM Method for Multi-Axial Fatigue Life Prediction
Traditional models for predicting multi-axial fatigue life are typically limited to specific materials and loading conditions.To address this limitation,this study adopts a deep learning approach to handle different multi-axial fatigue loading conditions.By using a grid search optimization algorithm,the optimal combination for three hyperparameters of the LSTM deep learning model-learning rate,number of hidden layers,and number of iterations are determined to achieve the best predictive performance.The method was applied to predict the fatigue life of three materials including pure titanium,SS 316L,and TC4 aluminum alloy.The results were all within the scatter band of two times the standard deviation,with a significant portion of predictions falling within the scatter band of 1.5 times.Furthermore,the extrapolation ability of the proposed method was validated using two sets of adjusted datasets,demonstrating good extrapolation performance for unknown loading paths.Therefore,the grid search optimized LSTM method for multi-axial fatigue life prediction can be applied to various materials and loading paths for multi-axial fatigue life prediction.

multi-axial fatiguelife predictiondeep learningloading path

牛寅、高扬、李涛、万文轩、穆迪奕龙、宋云飞

展开 >

长安大学工程机械学院,西安 710064

长安大学道路施工技术与装备教育部重点实验室,西安 710064

广西制造系统与先进制造技术重点实验室,广西桂林 541004

多轴疲劳 寿命预测 深度学习 加载路径

国家重点研发计划广西制造系统与先进制造技术重点实验室开放基金

2021YFB340050222-35-4-S010

2024

失效分析与预防
南昌航空大学 北京航空材料研究院

失效分析与预防

影响因子:0.352
ISSN:1673-6214
年,卷(期):2024.19(4)