首页|胎儿生长受限评估的混合机器学习模型:一项5年的随访研究

胎儿生长受限评估的混合机器学习模型:一项5年的随访研究

扫码查看
目的 探究列线图、决策树及随机森林3种混合机器学习模型对胎儿生长受限(FGR)的预测价值。方法 回顾性选取2018年1月至2022年12月南宁市红十字会医院行定期产检并分娩合并FGR孕妇111例,另选取本院同期未合并FGR孕妇 87例。收集所有孕妇的临床资料、彩色多普勒超声指标、实验室检查指标、胎儿情况。采用多因素Logistic回归分析孕妇合并FGR的影响因素;以独立影响因素作为预测变量,构建列线图、决策树及随机森林3种预测模型,采用准确度、灵敏度、特异度、精确度、召回率、F1值及受试者工作特征(ROC)曲线评价模型的预测性能。结果 多因素Logistic回归分析结果显示:未规律补充叶酸、妊娠期高血压疾病(HDP)、大脑中动脉阻力指数(RI)(截断值0。86)、低空腹静脉血管内皮生长因子(VEGF)(截断值49。85ng/mL)及低脐带静脉血VEGF(截断值67。10ng/mL)是孕妇FGR发生的独立影响因素(OR值介于0。013~57。563之间,P<0。05)。基于独立危险因素分别构建三种模型的曲线下面积(AUC)、灵敏度、特异度,列线图模型为0。903(0。823~0。982)、0。925、0。750;决策树模型为 0。894(0。809~0。979)、0。875、0。850;随机森林模型为 0。968(0。931~1。000)、0。875、0。950。随机森林模型预测的AUC值高于决策树模型(Z=-2。582,P<0。05)。结论 列线图、决策树及随机森林预测模型对FGR的预测结果均具有较高的区分度,其中随机森林模型预测孕妇并发FGR的效果优于决策树模型,随机森林模型与列线图模型的预测效能无显著差异,两者可相互补充应用。
Hybrid machine learning models for fetal growth restriction assessment:a 5-year follow-up study
Objective To explore the predictive value of three hybrid machine learning models(nomogram,decision tree and random forest)for fetal growth restriction(FGR).Methods A total of 111 pregnant women with FGR who underwent regular obstetric examination and delivered in Nanning Red Cross Hospital from January 2018 to December 2022 were retrospectively selected,and another 87 pregnant women without FGR in the same period of time were also selected.Clinical data,color Doppler ultrasound indexes,laboratory test indexes,and fetal conditions of all pregnant women were collected.Multifactorial Logistic regression was used to analysis the influencing factors of FGR in pregnant women.Three prediction models,nomogram,decision tree and random forest,were constructed using independent influencing factors as predictor variables.The predictive performance of the models was evaluated using accuracy,sensitivity,specificity,precision,recall,F1 value,and receiver operating characteristic(ROC)curves.Results Multifactorial logistic regression analysis showed that irregular folic acid supplementation,hypertensive disorders of pregnancy(HDP),middle cerebral artery middle cerebral artery RI(cut-off value=0.86),low fasting venous blood VEGF(cut-off value=49.85ng/mL),and low umbilical cord venous blood VEGF(cut-off value=67.10ng/mL)were independent factors for the occurrence of FGR in pregnant women(OR=0.013-57.563,respectively,all P<0.05).Based on the independent risk factors,the area under the curve(AUC),sensitivity,and specificity of the three models were constructed respectively,and were 0.903(0.823-0.982),0.925,0.750 for the nomogram model;were 0.894(0.809-0.979),0.875,0.850 for the decision tree model;were 0.968(0.931-1.000),0.875,0.950 for the random forest model.The AUC value of random forest model was higher than that of decision tree model(Z=-2.582,P<0.05).Conclusion The prediction results of nomogram,decision tree and random forest prediction models on FGR all have a high degree of differentiation,among which the random forest model is better than the decision tree model in predicting.There is no significant difference in the prediction efficacy between the random forest model and the nomogram model,and the two can be complementary to each other in the application of predicting FGR.

fetal growth restrictioninfluence factornomogramdecision treerandom forestprediction

葛莉萍、潘健、谭骥、伍朝夏

展开 >

南宁市妇幼保健院产科,广西南宁 530012

南宁市红十字会医院产科,广西南宁 530012

胎儿生长受限 影响因素 列线图 决策树 随机森林 预测

广西壮族自治区卫生健康委员会自筹经费科研课题

Z20201197

2024

中国妇幼健康研究
西安交通大学,中国疾病控制中心妇幼保健中心

中国妇幼健康研究

CSTPCD
影响因子:0.942
ISSN:1673-5293
年,卷(期):2024.35(1)
  • 11