首页|基于SEIR模型对新发传染病住院患者变化规律的预测研究

基于SEIR模型对新发传染病住院患者变化规律的预测研究

扫码查看
目的 探求新发传染病发展规律,预测住院患者变化趋势,为今后应对突发公共卫生事件、评估医疗人力需求和制定疫情防控策略提供科学依据。方法 基于SEIR模型理论,结合四川省新冠疫情防控政策,建立疫情传播过程中预警、暴发和恢复三个阶段的传染病动力学模型。根据四川省卫生健康委员会公布的新冠疫情实时数据,选取2020年1月21 日 3月25日新冠病毒感染患者每日新增确诊病例数、累计确诊病例数、每日现有疑似病例数、累计出院病例数以及死亡病例数等,运用最小二乘优化问题算法,求解模型参数,输出模型拟合结果,从而评估模型可行性。结果 模型拟合曲线与实际参考曲线的整体变化趋势基本一致;预警阶段的平均绝对百分比误差为30。06%,均方根误差为17。840 4;暴发阶段的平均绝对百分比误差为10。14%,均方根误差为66。845 2;恢复阶段的均方根误差为16。508 2。结论 该研究建立的多阶段SEIR模型整体拟合效果较好,可以用于预测新发传染病住院患者人数的变化趋势。
Prediction of Changes in Hospitalized Patients with Newly Emerging Infectious Diseases based on SEIR Model
Objective To explore the development pattern of newly emerging major infectious diseases,to predict the trend of changes in hospitalized patients,and to provide scientific basis for responding to public health emergen-cies,assessing medical manpower needs,and formulating epidemic prevention and control strategies in the fu-ture.Methods Based on the theory of the SEIR model(sustainable exposed affected and removed,SEIR),combined with the prevention and control policies of COVID-19 in Sichuan province,a dynamic model of infectious diseases in three stages of early warning,outbreak and recovery in the process of epidemic transmission was estab-lished.According to the real-time data of COVID-19 released by Sichuan Health Commission,the daily newly con-firmed cases,cumulative confirmed cases,daily existing suspected cases,cumulative discharged cases and death cases of COVID-19 patients from January 21,2020 to March 25,2020 were selected,and the least squares optimization al-gorithm was used to solve the model parameters,output the model fitting results,and evaluate the feasibility of the model.Results The overall trend of the model fitting curve was basically consistent with the actual reference curve.The average absolute percentage error during the early warning stage was 30.06%,and the root mean square error was 17.840 4.The average absolute percentage error during the outbreak stage was 10.14%,and the root mean square error was 66.845 2.The root mean square error during the recovery phase was 16.508 2.Conclusion The multi-stage SEIR model established in this article has a good overall fitting effect,which can be used to predict the trend of changes in the number of newly diagnosed major infectious disease inpatients.

Emerging infectious diseasesDynamic model of infectious diseasesInpatientCOVID-19

杨智博、刘珊珊、王聪、陈正举、蒋艳

展开 >

四川大学华西医院全程管理中心,四川成都,610041

四川大学华西医院循证护理中心,四川 成都,610041

四川大学华西医院放射科临床磁共振研究中心,四川 成都,610041

四川大学华西医院护理部,四川 成都,610041

展开 >

新发传染病 传染病动力学模型 住院患者 新冠病毒感染

国家自然科学基金项目四川省护理科研课题

72174135H21006

2024

中国社会医学杂志
华中科技大学同济医学院

中国社会医学杂志

CSTPCD
影响因子:1.193
ISSN:1673-5625
年,卷(期):2024.41(2)
  • 16