首页|序列和功能信息介导的蛋白质互作特征评价与数据库构建

序列和功能信息介导的蛋白质互作特征评价与数据库构建

扫码查看
目的 蛋白质相互作用研究对于理解DNA功能、基因组元件作用机制有重要意义.已有大量工作在从蛋白质-蛋白质互作的计算预测方向展开,其中蛋白质-蛋白质互作的特征起着很重要的作用.互作特征的评价及相关数据库构建仍是蛋白质互作预测的一项重要工作.方法 该文从基因、蛋白质序列、功能信息层面提取出人类蛋白质-蛋白质对的27个特征,并应用于多种分类器,利用ROC曲线对特征的性能给出了科学的评价.结果 通过研究发现逻辑回归和贝叶斯网络分类效果最好,生物过程、细胞组分、分子功能、基因表达值、组织、域间互作的可用性明显高于其他特征,同时构建了人类蛋白质互作特征数据库,供广大科研工作者使用.结论 从多角度评价了特征可用性,得到了表现较优的特征,但是对于其中一些特征,还需要进一步提高覆盖率,从而达到更好的效果.
Sequences and functional information based protein-protein interaction characteristics evaluation and database construction
Objective Protein-protein interaction (PPI) studies are important for understanding the DNA function andfunctional mechanism of genomic elements.A lot of works had been done towards the direction of calculating predictions of PPIs,and these methods are a very important tool for determining the PPI chaiacteristics.Still much more works remain to be done for evaluating the PPI characteristics and building a related database.Methods we extracted 27 PPI features from gene,protein sequences and functional information in human,then apphed them to various classifiers and evaluated the performance of all the classifiers and features by ROC curve.Results Through our analysis,we found that logistic regression and bayesian network classification are best for PPI characteristics.Biological Process,Cell Composition,Molecular Function,Gene Expression Values,Organization,and Availability of interactions between domain were obviously more useful than other characteristics.Meanwhile,we built a easy using Human Protein Feature Database (HPFD).Conclusion We discovered PPI characteristics with better performance usability in evaluation of function characteristic.However,some of these characteristics,still need to be further optimized in terms of improved PPI coverage.

Protein-protein interactionsMachine learningFeature evaluationsDatabase

李晋、陈曦、林效宗、杨欢、张瑞杰、王丽美

展开 >

150081,哈尔滨医科大学生物信息科学与技术学院统计遗传学教研室

150081,哈尔滨医科大学附属第二医院急诊创伤外科

150081,哈尔滨医科大学基础医学院计算机教研室

蛋白质-蛋白质互作 机器学习 特征评价 数据库

黑龙江省教育厅科研项目

12531298

2014

国际遗传学杂志
中华医学会 哈尔滨医科大学

国际遗传学杂志

CSTPCD
影响因子:0.175
ISSN:1673-4386
年,卷(期):2014.37(5)
  • 21