Superhydrophobic surface of underwater high-pressure anti-wetting V-groove hierarchical Cu nanowire clusters for drag reduction
To address the problem of poor air-layer stability of underwater drag-reducing superhydrophobic surfaces,Cu nanowire superhydrophobic surface with V-groove structure,compartmentalized cluster structure,and micro-nano scale hierarchical structure on the Cu substrate was proposed using a two-step electrochemical deposition method.An underwater high-pressure air-layer stability test and a drag reduction test were conducted.The results show that the surface maintains up to 76%of unwetted area at 0.45 MPa water pressure.Meanwhile,the surface can achieve up to 56%drag reduction in laminar flow drag reduction experiments with flat plate rheometer,which shows excellent drag reduction performance.The V-groove hierarchical Cu nanowire cluster superhydrophobic surface can be applied in ship navigation fields with both underwater high-pressure air-layer stability and drag reduction effects,which provides a solution for drag reduction on superhydrophobic surfaces.