首页|基于结构功能交叉神经网络的多模态医学图像融合

基于结构功能交叉神经网络的多模态医学图像融合

扫码查看
针对多模态医学图像融合中存在纹理细节模糊和对比度低的问题,提出了一种结构功能交叉神经网络的多模态医学图像融合方法.首先,根据医学图像的结构信息和功能信息设计了结构功能交叉神经网络模型,不仅有效地提取解剖学和功能学医学图像的结构信息和功能信息,而且能够实现这两种信息之间的交互,从而很好地提取医学图像的纹理细节信息.其次,利用交叉网络通道和空间特征变化构造了一种新的注意力机制,通过不断调整结构信息和功能信息权重来融合图像,提高了融合图像的对比度和轮廓信息.最后,设计了一个从融合图像到源图像的分解过程,由于分解图像的质量直接取决于融合结果,因此分解过程可以使融合图像包含更多的细节信息.通过与近年来提出的7种高水平方法相比,本文方法的AG,EN,SF,MI,QAB/F和CC客观评价指标分别平均提高了22.87%,19.64%,23.02%,12.70%,6.79%,30.35%,说明本文方法能够获得纹理细节更清晰、对比度更好的融合结果,在主观视觉和客观指标上都优于其他对比算法.
Multimodal medical image fusion method based on structural functional cross neural network
To solve the problems of texture detail blurring and low contrast in multimodal medical image fusion,a multimodal medical image fusion method with structural-functional crossed neural networks was proposed.Firstly,this method designed a structural and functional cross neural network model based on the structural and functional information of medical images.Within each structural-functional cross mod-ule,a residual network model was also incorporated.This approach not only effectively extracted the structural and functional information from anatomical and physiological medical images but also facilitated interaction between structural and functional information.As a result,it effectively captured texture details from multi-source medical images,creating fused images that closely align with human visual characteris-tics.Secondly,a new attention mechanism module was constructed by utilizing the effective channel atten-tion mechanism and spatial attention mechanism model(ECA-S),which continuously adjusted the weights of structural and functional information to fuse images,thereby improving the contrast and contour information of the fused image,and to make the fused image color more natural and realistic.Finally,a decomposition process from the fused image to the source image was designed,and since the quality of the decomposed image depends directly on the fusion result,the decomposition process could make the fused image contain more texture detail information and contour information of the source image.By comparing with seven high-level methods for medical image fusion proposed in recent years,the objective evaluation indexes of AG,EN,SF,MI,QAB/F and CC of this paper's method are improved by 22.87%,19.64%,23.02%,12.70%,6.79%and 30.35%on average,respectively,indicating that this paper's method can obtain fusion results with clearer texture details,higher contrast and better contours in subjective visual and objective indexes are better than other seven high-level contrast methods.

multimodal medical image fusionstructural and functional information cross-interacting net-workattention mechanismdecomposition network

邸敬、郭文庆、任莉、杨燕、廉敬

展开 >

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

多模态医学图像融合 结构功能信息交叉网络 注意力机制 分解网络

甘肃省科技计划资助项目国家自然科学基金资助项目甘肃省杰出青年基金资助项目甘肃省教育科技创新产业支撑项目

22JR5RA3606206102321JR7RA3452021CYZC-04

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(2)
  • 4