首页|联合线性引导与网格优化的混凝土裂缝分割

联合线性引导与网格优化的混凝土裂缝分割

扫码查看
针对混凝土表面裂缝分割过程中分割精度低、细微裂缝漏分和背景干扰等问题,提出一种联合线性引导和网格优化的裂缝分割模型.首先,在主干网络中引入多分支线性引导模块,通过自适应单维度池化增强网络对裂缝线性结构的表达能力,让不同区域的裂缝建立联系,增强全局上下文信息感知能力,提高网络分割精度;然后,提出网格细节优化模块,通过分区-优化-合并三步骤,将整个空间域划分为若干个空间网格,提取空间网格中的细微裂缝信息,防止细微裂缝漏分;最后,在主干网络的跳跃连接处嵌入混合注意力模块,在空间和通道双维度突出裂缝特征,减少背景干扰.在Deepcrack537,Crack500和CFD裂缝数据集上,所提模型的IoU值分别达到77.07%,58.96%和56.55%,F1-score值分别达到87.05%,74.19%和72.24%,明显优于大多数现有方法,具有更高的分割精度.
Concrete crack segmentation combined with linear guidance and mesh optimization
A model was proposed to address issues with low segmentation accuracy,leakage of tiny cracks,and background interference in the segmentation process of concrete surface cracks.The model combined linear guidance and mesh optimization for crack segmentation.Firstly,the backbone network was enriched with a multi-branch linear guidance module.The network's ability to represent the linear structure of cracks was boosted by adaptive single-dimensional pooling.This facilitated the establishment of connections between cracks in different areas,enhanced the capability to perceive global context data,and improved the network's segmentation accuracy.Then,a module for mesh detail optimization is pro-posed,which divides the entire spatial domain into several spatial meshes through the three steps of parti-tioning,optimization,and merging.The fine cracks' information in the spatial meshes was extracted to prevent the leakage of fine cracks.Finally,a mixed attention module was embedded in the skip connec-tions of the backbone network,highlighting crack features in the two-dimensional space and channels while also reducing background interference.On the Deepcrack537,Crack500,and CFD crack datasets,the proposed model achieves IoU values of 77.07%,58.96%,and 56.55%,respectively.The F1-score val-ues also performs well,achieving 87.05%,74.19%,and 72.24%,respectively.These results are signif-icantly better than those of most existing methods,with superior segmentation accuracy.

crack imagelinear guidesemantic segmentationmesh optimizationattention mechanism

刘光辉、陈健、孟月波、徐胜军

展开 >

西安建筑科技大学 信息与控制工程学院,陕西 西安 710055

建筑机器人陕西省高等学校重点实验室,陕西 西安 710055

西安市建筑制造智动化技术重点实验室,陕西 西安 710055

裂缝图像 线性引导 语义分割 网格优化 注意力机制

陕西省重点研发计划项目陕西省自然科学基础研究计划项目

2021SF-4292023-JC-YB-532

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(2)
  • 5