首页|悬吊式重力卸荷系统的主动式缓冲控制

悬吊式重力卸荷系统的主动式缓冲控制

扫码查看
针对索驱悬吊式重力卸荷系统被动缓冲器带来的欠驱动问题,提出了基于气动人工肌肉(Pneumatic Artificial Muscle,PAM)主动式缓冲器控制方法.首先,分析用于地面微/低重力模拟的悬吊式重力卸荷系统,为了克服PAM高度非线性特性,提出基于块结构的非线性神经网络建模方法,其次分析吊索与航天器相互作用过程中挠性引起的力扰动,最后采用非线性模型预测跟踪控制.相比传统PID控制方法,该方法具有参数调节简单,实时跟随性能好,以及对卸荷系统目标惯性参数的摄动具有控制性能不变性等优势.实验结果表明,设置不同扰动情况跟随力误差都能保证在3%以内,实验证明了基于PAM主动缓冲器的可行性,所提出的控制方法能够在挠性不确定性的情况下实现力跟随控制.
Active damping control method for suspended gravity offloading system
To address the issue of underactuation caused by passive buffers in a tether-driven microgravity simulation system,an active buffer control method based on Pneumatic Artificial Muscles(PAM)was proposed.Firstly,the tether-driven microgravity simulation system was analyzed for ground-based micro/low-gravity simulation.A block-structured nonlinear neural network modeling method to effectively over-come the highly nonlinear nature of PAM was introduced.Subsequently,the disturbances caused by the flexible interaction between the tether and the spacecraft was analyzed.Finally,a nonlinear model predic-tive tracking control approach was employed.Compared to traditional PID control methods,the proposed was introduced approach offers advantages such as simple parameter adjustment,excellent real-time track-ing performance,and robust control performance in the presence of perturbations to the target inertia pa-rameters of the unloading system.Experimental results demonstrate that the proposed method ensures tracking force error within 3%under various disturbances.The feasibility of the active buffer based on PAMs is confirmed experimentally,and the proposed control method achieves force-tracking control in the presence of flexural uncertainty.

suspended gravity offloading systempneumatic artificial muscleactive buffernonlinear model predictive tracking control

晏慧星、卢鸿谦、尹航、黄显林、陈泰年

展开 >

哈尔滨工业大学 控制理论与制导研究中心,黑龙江 哈尔滨 150001

悬吊式重力卸荷系统 气动人工肌肉 主动缓冲器 非线性模型预测跟踪控制

国家自然科学基金资助项目

62203300

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(3)
  • 10