首页|虚拟现实中视觉诱发晕动症时空多特征评价

虚拟现实中视觉诱发晕动症时空多特征评价

扫码查看
沉浸式的虚拟现实体验中视觉诱发晕动症(Visually Induced Motion Sickness,VIMS)是影响虚拟现实系统发展与应用的一个重要问题.现有的基于视觉内容的评价方案大多考虑的要素不够全面,对运动信息的提取较为简单,且少有考虑时域上的突变对晕动症的影响.针对上述问题,提出了虚拟现实中视觉诱发晕动症时空多特征评价模型;基于立体全景视频中空域、时域信息来设计视觉诱发晕动症评价模型,采用更符合人眼感知的加权运动特征,并考虑了立体全景视频时域的突变信息设计了特征提取方式.所提出模型分为预处理模块、特征提取模块及时域聚合与回归模块.预处理模块用于视口提取和光流图、视差图、显著图的估计.特征提取模块包含前背景加权运动特征提取、基于变换域的视差特征提取、空间特征提取及时域突变特征提取.时域聚合后通过支持向量回归得到VIMS评价分数.实验结果表明,该模型在立体全景视频数据库SPVCD上的预测结果与平均主观意见分的皮尔逊线性相关系数为0.821、斯皮尔曼相关系数为0.790、均方根误差为0.489.该模型取得了优良的预测性能,验证了所提出特征提取模块的有效性.
Spatiotemporal multi-feature evaluation of visually induced motion sickness in virtual reality
Visually induced motion sickness(VIMS)in immersive virtual reality experience is an impor-tant problem that impedes the development and applications of virtual reality systems.Most of the existing assessment methods based on visual content are not comprehensive enough,and the extracted features of motion information are relatively simple,and the influence of abrupt changes in time domain on motion sickness is rarely considered.To solve these problems,a spatio-temporal multi-feature assessment model for VIMS in virtual reality was proposed.The spatial and temporal information of stereoscopic panoramic video was used to design the assessment model of VIMS.The weighted motion features more in line with human perception were adopted,and the feature extraction method was designed considering the temporal mutation information of stereoscopic panoramic video.The proposed model was divided into preprocess-ing module,feature extraction module and time domain aggregation and regression module.The prepro-cessing module was used to extract the viewport images and estimate the optical flow map,disparity map and saliency map.The feature extraction module included foreground-background weighted motion feature extraction,disparity feature extraction based on transform domain,spatial feature extraction and time do-main abrupt change feature extraction.VIMS evaluation scores were finally obtained through time domain aggregation and support vector regression.The experimental results show that the PLCC,SROCC and RMSE of the proposed model are 0.821,0.790 and 0.489,respectively when tested on the stereoscopic panoramic video database SPVCD.The model achieves excellent prediction performance which verifies the effectiveness of the proposed feature extraction module.

virtual realitystereoscopic panoramic videomotion sicknessmotion perceptionabrupt change feature

董奇峰、郁梅、蒋志迪、鲁子昂、蒋刚毅

展开 >

宁波大学 信息科学与工程学院,浙江 宁波 315211

宁波大学 科学技术学院 信息工程学院,浙江 宁波 315212

虚拟现实 立体全景视频 晕动症 运动感知 突变特征

浙江省自然科学基金国家自然科学基金

LY21F01000361871247

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(4)
  • 28