首页|融入交叉注意力编码的皮肤病变分割网络

融入交叉注意力编码的皮肤病变分割网络

扫码查看
由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割.首先,将设计的多头门控位置交叉自注意力编码器引入到U型网络的最后两个层级中,使其能够在图像中学习语义信息的长期依赖关系,弥补卷积操作全局建模能力的不足;其次,在跳跃连接部分引入一个新的位置通道注意力机制,用于编码融合特征的通道信息并保留位置信息,提高网络捕获目标结构的能力;最后,设计一个正则化Dice损失函数,使网络能够在假阳性和假阴性之间权衡,提高网络的分割结果.基于ISBI2017和ISIC2018数据集的对比实验结果表明,本文网络的Dice分别为91.48%和91.30%,IoU分别为84.42%和84.12%,分割精度在整体上优于其他网络,且具有较低的参数量和计算复杂度,即本文网络能够高效地分割皮肤病变图像的目标区域,可为皮肤疾病辅助诊断提供帮助.
Skin lesion segmentation network with cross-attention coding
Owing to the limitations of convolutional operations,existing skin lesion image segmentation networks are unable to model the global contextual information in images,resulting in their inability to ef-fectively capture the target structural information of images.In this paper,a U-shaped hybrid network with cross-self-attention coding was designed for skin lesion image segmentation.Firstly,the designed multi-head gated position cross self-attention encoder was introduced in the last two layers of the U-shaped network to enable it to learn the long-term dependencies of semantic information in images and to compen-sate for the lack of global modelling capability of the convolutional operation;Secondly,a novel position channel attention mechanism was implemented in the skip connection part to encode the channel informa-tion of the fused features and retain the positional information to improve the network's ability to capture the target structure;finally,a regularised dice loss function was designed to enable the network to trade off between false positives and false negatives to improve the network's segmentation results.Experimental results on ISBI2017 and ISIC2018 datasets show that the network presented in this paper achieves Dice score of 91.48%and 91.30%,and IoU of 84.42%and 84.12%,respectively.The network outperforms other networks in terms of segmentation accuracy with fewer parameters and lower computational complex-ity.Therefore,it can efficiently segment the target region of skin lesion images and aid in the adjunctive di-agnosis of skin diseases.

medical image segmentationskin lesioncross-self-attention codingposition channel atten-tion

李大湘、杨福杰、刘颖、唐垚

展开 >

西安邮电大学 通信与信息工程学院,陕西 西安 710121

医学图像分割 皮肤病变 交叉自注意力编码 位置通道注意力

国家自然科学基金陕西省自然科学基金西安邮电大学创新基金

620713792019JM-604CXJJYL2022002

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(4)
  • 24