首页|融合多尺度特征卷积神经网络的多光谱图像压缩方法

融合多尺度特征卷积神经网络的多光谱图像压缩方法

扫码查看
不同于普通图像压缩,多光谱图像压缩除了需要去除空间冗余同时还需要去除光谱间冗余,近年来研究表明端到端的卷积神经网络模型在图像压缩方面具有很好的性能,但对于多光谱图像压缩其编解码器并不能有效解决同时高效提取到多光谱图像空间和光谱间特征的问题,同时也会忽略图像局部特征信息.针对以上问题,本文提出了一种融合多尺度特征卷积神经网络的多光谱图像压缩方法.所提出网络在压缩模型的编解码器中嵌入了可以提取出不同尺度下空间和光谱间特征信息的多尺度特征提取模块,以及可以用来捕捉局部空间信息和光谱信息的空间光谱间非对称卷积模块.实验表明,与传统算法如JPEG2000和3D-SPIHT以及深度学习方法相比,在Landsat-8的7波段和Sentinel-2的8波段数据集上所提出模型的峰值信噪比(PSNR)指标高于传统算法1-2dB.在平均光谱角度(MSA)指标的衡量下,所提出的模型在Landsat-8数据集上优于传统算法约8×10-3 rad,在Sentinel-2数据集上优于传统算法约2×10-3 rad.满足了多光谱图像压缩对空间和光谱间特征提取以及局部特征提取的要求.
Multi-spectral image compression by fusing multi-scale feature convolutional neural networks
Unlike ordinary image compression,multispectral image compression needs to remove spatial redundancy as well as inter-spectral redundancy.Recent studies show that the end-to-end convolutional neural network model has a very good performance in image compression,but for multispectral image com-pression,its codecs cannot effectively solve the problem of efficiently extracting spatial and inter-spectral features of multispectral images at the same time,and it neglects the localized feature information of the image.The localized feature information of the image is also neglected.To address the above problems,this paper proposed a multispectral image compression method that incorporates a convolutional neural net-work with multiscale features.The proposed network embeds that can extract spatial and inter-spectral fea-ture information at different scales,and an inter-spectral spatial asymmetric convolution module that can be used to capture local spatial and spectral information.Experiments show that the Peak Signal to Noise Ra-tio(PSNR)metrics of the proposed model are 1-2 dB higher than those of the traditional algorithms such as JPEG2000 and 3D-SPIHT as well as the deep learning methods on the 7-band of Landsat-8 and 8-band of Sentinel-2 datasets.Regarding the Mean Spectral Angle(MSA)metrics,the proposed model is more effective on the Landsat-8 dataset and outperforms the traditional algorithm by about 8×10-3 rad.The pro-posed model outperforms the traditional algorithm by about 2×10-3 rad on the Sentinel-2 dataset.The re-quirements of multispectral image compression for spatial and inter-spectral feature extraction as well as lo-calized feature extraction are satisfied.

spatial-spectral featuresasymmetric convolutionConvolutional Neural Networks(CNN)multispectral image compression

张丽丽、陈子坤、潘天鹏、屈乐乐

展开 >

沈阳航空航天大学 电子信息工程学院,辽宁 沈阳 110136

空间光谱间特征 非对称卷积 卷积神经网络 多光谱图像压缩

辽宁省兴辽英才计划辽宁省教育厅项目

XLYC1907134LJKZ0174

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(4)
  • 20