首页|柔性浅埋物的声-振智能探测

柔性浅埋物的声-振智能探测

扫码查看
提出一种基于目标检测算法的柔性浅埋物的声-振智能探测方法,将声波激励、激光散斑干涉测振和目标检测算法有机结合,用以柔性浅埋物的大范围快速探测.在论述YOLO系列目标检测算法原理的基础上,选择并优化柔性浅埋物的智能探测网络模型;然后,搭建声-光融合智能探测系统,构建不同柔性浅埋物的激光散斑干涉条纹图数据集;最后,对数据集进行训练和测试,验证该算法用于干涉条纹图识别的可行性.实验结果表明:在给定实验条件下,柔性浅埋物智能探测网络模型的精确率为98.39%,召回率为84.72%,平均识别精度为99.66%.该声-振智能探测方法可以在给定实验环境下对多种柔性浅埋物的激光散斑干涉条纹图进行智能识别,适用于浅层地下柔性掩埋物的大面积快速探测.
Acoustic-vibration intelligent detection of flexible shallow buried objects
A novel sound-vibration detection approach,leveraging a target detection algorithm,merges acoustic stimulation,laser speckle interferometry,and target detection algorithms for efficient and broad-range detection of flexible,shallowly buried objects.Initially,after discussing the YOLO series target de-tection algorithm principles,an optimal intelligent detection network model for these objects is chosen.Subsequently,a sound-light fusion intelligent detection system is developed,creating a dataset of laser speckle interference patterns for various flexible,shallowly buried objects.This dataset is then trained and tested to evaluate the algorithm's effectiveness in recognizing interference patterns.Experimental out-comes reveal that,under specified conditions,the model achieves a 98.39%accuracy rate,an 84.72%re-call rate,and an average recognition accuracy of 99.66%.This sound-vibration detection method effec-tively identifies laser speckle interference patterns of numerous flexible,shallowly buried objects in the tested environment,proving its efficacy for quick,large-scale detection of such objects underground.

sound-light fusion detectionflexible shallow burialYOLOv5acoustic-seismic couplinginterference fringe pattern

王驰、曹鹏、黄庆、王超、盛才良

展开 >

上海大学 精密机械工程系,上海 200444

中国航空工业集团公司洛阳电光设备研究所,河南 洛阳 471023

江苏永康机械有限公司,江苏 无锡 214203

声-光融合探测 柔性浅埋物 YOLOv5 声-地震耦合 干涉条纹

国家自然科学基金近地面探测技术重点实验室项目北京市航空智能遥感装备工程技术研究中心开放基金

621751446142414200410AIRSE20233

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(5)
  • 19