光学精密工程2024,Vol.32Issue(5) :714-726.DOI:10.37188/OPE.20243205.0714

DRT Net:面向特征增强的双残差Res-Transformer肺炎识别模型

DRT Net:dual Res-Transformer pneumonia recognition model oriented to feature enhancement

周涛 彭彩月 杜玉虎 党培 刘凤珍 陆惠玲
光学精密工程2024,Vol.32Issue(5) :714-726.DOI:10.37188/OPE.20243205.0714

DRT Net:面向特征增强的双残差Res-Transformer肺炎识别模型

DRT Net:dual Res-Transformer pneumonia recognition model oriented to feature enhancement

周涛 1彭彩月 1杜玉虎 1党培 1刘凤珍 1陆惠玲2
扫码查看

作者信息

  • 1. 北方民族大学 计算机科学与工程学院,宁夏 银川 750021;北方民族大学 图像图形智能处理国家民委重点实验室,宁夏 银川 750021
  • 2. 宁夏医科大学 医学信息与工程学院,宁夏 银川 750004
  • 折叠

摘要

针对肺部X射线图像的病灶区域较小、形状复杂,与正常组织间的边界模糊,使得肺炎图像中的病灶特征提取不充分的问题,提出了一个面向特征增强的双残差Res-Transformer肺炎识别模型,设计3种不同的特征增强策略对模型特征提取能力进行增强.设计了组注意力双残差模块(GADRM),采用双残差结构进行高效的特征融合,将双残差结构与通道混洗、通道注意力、空间注意力结合,增强模型对于病灶区域特征的提取能力;在网络的高层采用全局局部特征提取模块(GLFEM),结合CNN和Transformer的优势使网络充分提取图像的全局和局部特征,获得高层语义信息的全局特征,进一步增强网络的语义特征提取能力;设计了跨层双注意力特征融合模块(CDAFFM),融合浅层网络的空间信息以及深层网络的通道信息,对网络提取到的跨层特征进行增强.为了验证本文模型的有效性,分别在COVID-19 CHEST X-RAY数据集上进行消融实验和对比实验.实验结果表明,本文所提出网络的准确率、精确率、召回率,F1值和AUC值分别为98.41%,94.42%,94.20%,94.26%和99.65%.DRT Net能够帮助放射科医生使用胸部X光片对肺炎进行诊断,具有重要的临床作用.

Abstract

Deep learning for lung X-ray image recognition has emerged as a prominent research area.The challenge lies in the small,complexly shaped lesion areas within lung X-rays,where the boundary be-tween the lesion and normal tissue is often unclear,complicating feature extraction in pneumonia images.This paper introduces a Dual Res-Transformer pneumonia recognition model focused on feature enhance-ment.It incorporates three feature enhancement strategies to augment the model's feature extraction capa-bilities.The model's key components include:the Group Attention Dual Residual Module(GADRM),which leverages a dual-residual structure for effective feature fusion and enhances local feature extraction through channel shuffle,channel attention,and spatial attention;the Global-Local Feature Extraction Module(GLFEM),which applies at the network's higher levels,merging CNN and Transformer benefits to extract comprehensive global and local image features,thereby boosting the network's semantic feature extraction;and the Cross-layer Dual Attention Feature Fusion Module(CDAFFM),designed to merge shallow network spatial information with deep network channel information,enhancing the network's cross-layer feature extraction.The model's efficacy was validated through ablation and comparative experi-ments on the COVID-19 CHEST X-RAY dataset.Results demonstrate the network's high performance,with accuracy,precision,recall,F1 score,and AUC values of 98.41%,94.42%,94.20%,94.26%,and 99.65%,respectively.This model offers significant assistance to radiologists in diagnosing various pneu-monia cases using chest X-rays,marking a crucial advancement in computer-aided pneumonia diagnosis.

关键词

肺炎识别/X射线图像/特征增强/双残差结构/Transformer

Key words

pneumonia recognition/X-ray image/feature enhancement/dual residual model/Transformer

引用本文复制引用

基金项目

国家自然科学基金(62062003)

宁夏回族自治区自然科学基金(2022AAC03149)

出版年

2024
光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
参考文献量26
段落导航相关论文