首页|基于多尺度自适应注意力的图像超分辨率网络

基于多尺度自适应注意力的图像超分辨率网络

扫码查看
针对大多数图像超分辨率重建方法利用单尺度卷积进行特征提取,导致特征提取不充分的问题,提出基于多尺度自适应注意力的图像超分辨率网络。为充分利用各个层次特征中的上下文信息,设计了多尺度特征融合块,其基本单元由自适应双尺度块、多路径渐进式交互块和自适应双维度注意力依次串联组成。首先,自适应双尺度块自主融合两个尺度的特征,获得了更丰富的上下文特征;其次,多路径渐进式交互块以渐进的方式交互自适应双尺度块的输出特征,提高了上下文特征之间的关联性;最后,自适应双维度注意力自主选择不同维度注意力细化输出特征后,提高了输出特征的鉴别力。实验结果表明,在Set5,Set14,BSD100和Urban100测试集上,本文方法在PSNR和SSIM定量指标上相比于其他主流方法相均有提升,尤其对于纹理细节难以恢复的Urban100测试集,本文方法在比例因子为×4时,相较于现有最优方法SwinIR,PSNR和SSIM指标分别提升了0。05 dB和0。004 5;在视觉效果方面,本文的重建图像具有更多的纹理细节。
Image super-resolution network based on multi-scale adaptive attention
Aiming at the problem that most image super-resolution methods cannot fully extract features by using single-scale convolution,an image super-resolution network based on multi-scale adaptive atten-tion is proposed.To fully use the contextual information in each hierarchical feature,a multi-scale feature fusion block was designed,whose basic unit consists of an adaptive dual-scale block,a multi-path progres-sive interactive block,and an adaptive dual-dimensional attention sequentially in series.Firstly,the adap-tive dual-scale block autonomously fused the features of two scales to obtain richer contextual features;sec-ondly,the multi-path progressive interactive block interacted the output of the adaptive dual-scale block in a progressive way to improve the correlation between the contextual features;lastly,the adaptive dual-di-mensional attention autonomously selected different dimensions of the attention to refine the output fea-tures,which makes the output features more discriminative.The experimental results show that on Set5,Set14,BSD100 and Urban100 test sets,the method of this paper improves the PSNR and SSIM quantita-tive metrics compared to other mainstream methods,especially for the Urban100 test set,where texture details are difficult to be recovered,the method of this paper improves PSNR and SSIM metrics by 0.05 dB and 0.004 5 respectively compared to the existing optimal method,SwinIR,with the scaling fac-tor of×4;in terms of visual effect,the reconstructed images in this paper have more texture details.

super-resolutionmulti-scale featureattention mechanismadaptive weightsprogressive information interaction

周颖、裴盛虎、陈海永、许士博

展开 >

河北工业大学 人工智能与数据科学学院,天津 300130

河北省控制工程技术研究中心,天津 300130

超分辨率 多尺度特征 注意力机制 自适应权重 渐进式信息交互

国家自然科学基金国家自然科学基金河北省自然科学基金

U21A2048262073117F202202064

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(6)
  • 33