首页|基于改进灰狼优化算法的QFN芯片图像多阈值分割方法

基于改进灰狼优化算法的QFN芯片图像多阈值分割方法

扫码查看
在QFN芯片封装缺陷检测中,增加图像分割环节可有效提高缺陷检测准确性与检测效率.针对图像分割中传统算法效率低、智能优化算法分割精度低稳定性差的问题,本文提出一种基于改进灰狼优化算法(IGWO)的图像多阈值分割方法.首先,改进原始灰狼优化算法非线性因子,平衡算法搜索效率与挖掘能力;其次,引入反向学习策略提高种群整体质量,引入正弦函数、调整头狼权重以改进灰狼更新策略,增强算法多样性与挖掘能力;然后,提出头狼靠拢与种群变异交替进行的位置更新策略,平衡算法收敛性能与跳出局部最优能力;最后,以Kapur熵为适应度函数,求解最优分割阈值.将本文提出的改进灰狼优化算法的多阈值图像分割方法,与灰狼优化算法(GWO)、基于翻筋斗觅食策略的灰狼优化算法(DSF-GWO)、基于莱维飞行的樽海鞘群优化算法(LSSA)、改进北方苍鹰算法(INGO)的图像分割方法进行实验对比,结果表明:本文方法在分割用时方面,约为DSF-GWO的1/2,INGO的1/4;在分割精度与稳定性方面,在进行QFN芯片缺陷图像的连续30次分割时,本文方法具有最大Kapur熵平均值、最小标准差与最短分割时间.因此本文方法可实现高精度、高稳定性与高效率的QFN芯片图像多阈值分割.
Multi-threshold image segmentation method of QFN chip based on improved grey wolf optimization
In the process of QFN chip surface defect detection,the accuracy and efficiency of defect detec-tion can be effectively improved by adding the image segmentation step.In view of the low efficiency of traditional image segmentation and the limitations of low precision and poor stability of image segmentation based on intelligent optimization algorithms,this paper proposed a multi-threshold image segmentation method based on Improved Grey Wolf Optimization(IGWO)algorithm.Firstly,the nonlinear factor in the original GWO algorithm was improved to balance the searching efficiency and mining ability of the al-gorithm.Secondly,the opposition-based learning was introduced to improve the overall quality of the pop-ulation,and the sine function and the weight of the head Wolf were introduced to improve the grey wolf up-dating strategy,so as to enhance the diversity and mining ability of the algorithm.Then,the head wolf ap-proach strategy and population mutation strategy were proposed to update the wolf position,so as to bal-ance the convergence performance and the ability to jump out of the local optimal of the algorithm.Final-ly,Kapur entropy was used as fitness function to obtain the optimal segmentation threshold.The proposed method was compared with the Grey Wolf Optimization algorithm(GWO),the Grey Wolf Optimization algorithm based on Disturbance and Somersault Foraging(DSF-GWO),Levy Flight Trajectory-based Salp Swarm Algorithm(LSSA),and the image segmentation method of the improved Northern Goshawk algorithm(INGO)in the experiments.The experimental results show that:In terms of segmentation time,the proposed method is about 1/2 that of DSF-GWO and 1/4 that of INGO.In terms of segmentation ac-curacy and stability,for 30 times of QFN chip defect images segmentation,the average Kapur entropy ob-tained by the proposed method is the largest,and the standard deviation is the smallest.Therefore,the proposed method can realize multi-threshold segmentation of QFN images with high accuracy,high stabili-ty and high efficiency.

Grey Wolf Optimization(GWO)multi-threshold segmentationKapur entropyQuad Flat No-lead package(QFN)

巢渊、徐魏、刘文汇、曹震、张敏

展开 >

江苏理工学院 机械工程学院,江苏 常州 213001

常州祥明智能动力股份有限公司,江苏 常州 213011

灰狼优化算法 多阈值分割 Kapur熵 QFN

国家自然科学基金江苏省自然科学基金

51905235BK20191037

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(6)
  • 28