首页|多尺度增强特征融合的钢表面缺陷目标检测

多尺度增强特征融合的钢表面缺陷目标检测

扫码查看
针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法.该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使得浅层特征在不丢失细节信息的同时获得丰富的深层语义.利用提出的空间特征增强模块从3个独立方向强化融合特征,通过引出残差旁路增强网络结构的稳定性,使卷积过程能够挖掘到更多的关键信息.根据先验框与真实框的整体交并程度为模型选择更为合适的训练样本.实验结果表明,该算法的检测精度达到80.47%,相比原始算法提升 6.81%.该算法的参数量为2.36 M,计算量为 952.67 MFLOPs,能快速且高精度检测钢材表面的缺陷信息,具有较高的应用价值.
Object detection of steel surface defect based on multi-scale enhanced feature fusion
To address the issue of low recognition accuracy in lightweight algorithms for steel surface de-fect detection,this paper introduces a Multi-scale Enhanced Feature Fusion(EFF)technique.Initially,an Adaptive Weighted Fusion(AWF)module calculates fusion weights adaptively for different feature levels.This allows shallow features to enrich with deep semantics without compromising detail.Subsequently,the Spatial Feature Enhancement(SFE)module boosts the fused features from three distinct directions and improves network stability by integrating residual pathways,enabling the convolution process to extract more critical information.The model then selects better training samples based on the overlap between the prior box and the ground truth.Experimental outcomes show that the proposed method achieves a detec-tion accuracy of 80.47%,marking a 6.81%increase over the baseline algorithm.Moreover,with 2.36 M parameters and 952.67 MFLOPs,this algorithm efficiently and accurately identifies steel surface defects,demonstrating significant practical utility.

defect detectionSingle Shot multibox Detector(SSD)enhanced feature fusionadaptive weighted fusionspatial feature enhancement

林珊玲、彭雪玲、王栋、林志贤、林坚普、郭太良

展开 >

福州大学 先进制造学院,福建 泉州 362252

中国福建光电信息科学与技术实验室,福建 福州 350116

福州大学 物理与信息工程学院,福建 福州 350116

缺陷检测 单发多框检测器 增强特征融合 自适应加权融合 空间特征增强

国家重点研发计划资助项目国家重点研发计划资助项目福建省自然科学基金资助项目国家自然科学基金青年基金资助项目国家重点研发计划资助

2021YFB36006032022YFB36037052020J01468621011322023YFB3609400

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(7)
  • 27