首页|界面钻蚀主导的准各向异性湿法刻蚀法制备玻璃微棱镜阵列

界面钻蚀主导的准各向异性湿法刻蚀法制备玻璃微棱镜阵列

扫码查看
玻璃微棱镜具有耐腐蚀、耐高温、寿命长等优点,但在玻璃上加工微棱镜阵列目前仍是一个难题.因此,提出了界面钻蚀主导的玻璃准各向异性湿法刻蚀方法,制备了高质量的微棱镜阵列器件.在元胞自动机中引入界面性质调控,模拟了界面钻蚀与各向同性侧蚀的竞争行为,探究了刻蚀横截面形貌的变化规律,构建了准各向异性湿法刻蚀模型.在此指导下,加工了横截面为梯形的微结构,设计并制备了间距、形状、尺寸均可调控的微棱镜阵列,重复性达到98%.验证了微棱镜阵列对LED灯扩散效果,光亮度提升了4.6倍.本文改变了传统玻璃湿法刻蚀各向同性的固有认识,创新性地开发了准各向异性刻蚀工艺,为玻璃微棱镜阵列等相关器件提供了高效低成本的制备方法.
Fabrication of glass microprism via interfacial erosion induced quasi-anisotropic wet etching
Microprism arrays are extensively utilized across various industries.Glass-based microprisms,in comparison to polymers,offer superior corrosion resistance,thermal stability,and durability.However,the isotropic nature of glass makes micromachining into prism-like structures challenging.In this paper,we introduce a novel interfacial erosion-induced quasi-anisotropic wet etching technique to manufacture glass microprism arrays efficiently and cost-effectively.For the first time,interfacial erosion is analyzed within a metacellular automaton to study the wet etching process,uncovering the dynamics between side etching and interfacial erosion and their impact on the side wall profiles.This approach yields varied microstruc-tures with tilted morphologies.Leveraging quasi-anisotropic etching characteristics,we successfully pro-duce microprism arrays with adjustable spacing,shape,and size,achieving 98%repeatability between ar-rays.Our method significantly enhances LED lamp diffusion,increasing average brightness by 4.6 times.This research not only pioneers a new direction in glass wet etching but also incorporates quasi-anisotropic properties into the traditional isotropic framework,presenting a straightforward,economical technique for fabricating glass microprism arrays and similar devices.

micro prism arrayswet etchingborosilicate glassinterfacial erosionquasi-anisotropic etching

李菲尔、余佳珈、杜立群、吴梦希、刘军山

展开 >

大连理工大学 高性能精密制造全国重点实验室,辽宁 大连 116024

大连理工大学 辽宁省微纳米技术及系统重点实验室,辽宁 大连 116024

微棱镜 湿法刻蚀 硼硅玻璃 界面钻蚀 准各向异性刻蚀

国家重点研发计划大连理工大学医工交叉联合基金

2022YFB3204600DUT23YG215

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(9)