首页|航拍多光谱田间秸秆覆盖量反演模型的建立与优化

航拍多光谱田间秸秆覆盖量反演模型的建立与优化

扫码查看
保护性耕作是农业耕地可持续性发展的重要方法,已被世界多地采用,秸秆覆盖量实现从"有无"到"多少"的进一步判定,是秸秆还田检测的重要指标.通过无人机搭载多光谱相机航拍研究区内春秋两季遥感数据,并同步测定玉米秸秆覆盖量.首先,通过遥感数据提取光谱反射率并构建光谱指数,采用相关系数法筛选出对秸秆覆盖量敏感的波段变量和光谱变量,作为模型输入变量;然后,采用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、BP神经网络(Back Propagation Neural Network,BPNN)和极限学习机(Extreme Learning Machine,ELM)4种机器学习算法,建立玉米秸秆覆盖量的反演模型,比较不同时期和不同研究区域的模型精度;最后,为解决预测性能受其模型参数影响较大问题,引入遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO),并提出遗传-粒子群混合算法(Ge-netic-Particle Swarm Optimization,GA-PSO),利用它们的互补性提高模型的性能,完成区域内秸秆覆盖量的估算.实验结果表明,基于GA-PSO优化的RF算法玉米秸秆覆盖量反演模型取得了最佳的反演效果,其中R2达到了0.74.同时,对比分析不同数据的反演结果,均较为真实地反映了区域内秸秆覆盖量,估测准确率达到91.36%,说明可以通过优化模型实现结果估算.研究为保护性耕作秸秆还田量检测提供科学参考,亦为其他作物秸秆覆盖量估测提供了可靠的模型反演方法.
Establishment and optimization of aerial multispectral field straw mulch quantity inversion model
Conservation tillage is a crucial method for the sustainable development of agricultural arable land and has been adopted worldwide.The quantity of straw mulch is determined not just by its presence but by its amount,serving as a key indicator for detecting straw return to the field.In this study,aerial re-mote sensing data from the spring and autumn seasons were captured using a UAV equipped with a multi-spectral camera,while the corn straw mulch quantity was measured simultaneously.Spectral reflectance was first extracted,and spectral indices were constructed from the remote sensing data.The correlation co-efficient method was then used to identify the band variables and spectral variables sensitive to the straw mulch quantity,which served as model input variables.Subsequently,machine learning algorithms such as support vector machine(SVM),random forest(RF),BP neural network(BPNN),and extreme learning machine(ELM)were employed to establish the inversion model for straw mulch quantity.The accuracy of these models was compared across different time periods and study areas.To address the significant impact of model parameters on predictive performance,genetic algorithm(GA)and particle swarm optimization(PSO)were introduced,culminating in the proposed genetic-particle swarm optimization hybrid algorithm(GA-PSO).This hybrid approach leveraged their complementary strengths to enhance model performance and complete the estimation of straw coverage in the region.The results indicated that the RF algorithm optimized by GA-PSO achieved the best inversion effect for corn straw mulch quantity,with an R² value of 0.74.Comparative analysis of different data sets consistently reflected the straw mulch quantity in the re-gion accurately.The accuracy of estimating the corn straw mulch quantity in the field reached 91.36%,demonstrating that result estimation can be effectively achieved through model optimization.This study provides a scientific reference for detecting straw return in conservation tillage and offers a reliable model inversion method for estimating straw mulch quantity in other crops.

multi-spectral imagemachine learningstraw mulch quantityUAVsgenetic algorithmparticle swarm algorithm

刘媛媛、孙宇、高雪冰、王利斌、王跃勇、刘梦琪、崔舒然

展开 >

吉林农业大学 信息技术学院(智慧农业研究院),吉林 长春 130118

长春市农业机械研究院,吉林 长春 130052

吉林农业大学 工程技术学院,吉林 长春 130118

吉林省农业机械研究院,吉林 长春 130022

展开 >

多光谱图像 机器学习 秸秆覆盖量 无人机 遗传算法 粒子群算法

国家自然科学基金资助项目吉林省科技厅技术创新引导项目吉林省科技厅重点研发项目

4200125620220402023GH20230202039NC

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(11)
  • 16