首页|小波DehazeFormer网络的道路交通图像去雾

小波DehazeFormer网络的道路交通图像去雾

扫码查看
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法.为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息.实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上.本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理.
Wavelet dehazeformer network for road traffic image dehazing method
Aiming at challenges such as low contrast,detail loss,blurring,and distortion in foggy images of traffic roads,a road traffic image dehazing method was proposed based on Wavelet DehazeFormer mod-el.To enhance dehazing capability of the model,a Wavelet DehazeFormer network with an encoder-decod-er structure was constructed. The encoder employed the DehazeFormer and the Selective Kernel Feature Fusion module (SKFF) as basic units in a cascaded manner. The encoding section consisted of three lev-els of such basic units to fuse the original information and post-dehazing information,capturing critical fea-tures more effectively. The middle feature layer adopted a local residual structure,incorporating the Con-volutional Block Attention Module (CBAM) for different weights assigned to features of different levels. Additionally,a Content-guided Attention based Mixup Fusion Scheme (CGAFusion) was introduced to adjust features by learning spatial weights. The decoder comprised DehazeFormer and SKFF,utilizing pointwise convolution to reduce parameter count while maintaining network performance. Jump connec-tions introduced wavelet transform to analyze feature maps of different scales,obtaining high and low-fre-quency features at various resolutions. This helped amplify details of the traffic fog image for enhanced tex-ture retention in the dehazed image. Finally,the original image and the decoded output feature map were fused to gather more detailed information. Experimental results demonstrate that,in comparison with the baseline DehazeFormer network,the proposed method achieves a PSNR improvement of over 1.32 on public datasets and 0.56 on synthetic datasets. The SSIM metric is increased by 0.015 or more,and there is a substantial reduction in MSE,with a decrease of 23.15 or more. The entropy metric shows an in-crease of 0.06 or more. The proposed dehazing algorithm exhibits excellent performance in enhancing con-trast,reducing fog-induced blurring and distortion,which preserves details in traffic fog images. This con-tributes to the advancement of intelligent visual surveillance and management in road traffic.

traffic image dehazingwavelet transformselective kernel feature fusioncontent-guided attentionDehazeFormer

夏平、李子怡、雷帮军、王雨蝶、唐庭龙

展开 >

三峡大学水电工程智能视觉监测湖北省重点实验室,湖北宜昌 443002

三峡大学计算机与信息学院,湖北宜昌 443002

交通图像去雾 小波变换 选择性核特征融合 内容引导注意力 DehazeFormer

国家自然科学基金湖北省重点实验室开放基金

U14012522018SDSJ07

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(12)