首页|顾及最优分配和最佳掩码的点云部件分割

顾及最优分配和最佳掩码的点云部件分割

扫码查看
为了增强网络的泛化能力,提升部件分割的精度,本文提出了一种顾及最优分配和最佳掩码的点云部件分割方法.首先,根据推土机距离定义两个点云之间的最优分配;然后利用最远点采样对点云分组,计算每个分组中点的显著性,再利用球查询确定点云的最佳掩码,以保留原始点云的语义信息;最后,将一点云中显著性高的点的邻域替换掉另一点云中显著性低的点的邻域,从而实现点云之间的混合增强.本文在ShapeNet数据集上进行验证,使用本方法进行增强数据再输送到PointNet,PointNet++以及DGCNN模型中,其mIoU从83.7%,85.1%,85.1%分别增加到了85.1%,86.3%以及86.0%,有效提升了部件分割的效果.
Part segmentation method of point cloud considering optimal allocation and optimal mask
In order to enhance the generalization ability of the network and improve the accuracy of part segmentation,this paper proposed a method for part segmentation of point cloud considering the optimal allocation and the optimal mask. Firstly,the optimal allocation between two point clouds was defined ac-cording to Earth Mover's Distance. Then the point cloud was grouped by the Farthest Point Sampling,the significance of each point in the grouping is calculated,and the optimal mask of the point cloud was deter-mined by the ball query to preserve the semantic information of the original point cloud. Finally,the neigh-borhood of a point with high significance in one cloud was replaced by the neighborhood of a point with low significance in another cloud,so as to achieve hybrid enhancement between point clouds. In this paper,the data was verified on ShapeNet data set,and the method was enhanced to PointNet,PointNet++and DGCNN models. The mIoU increased from 83.7%,85.1% and 85.1% to 85.1%,86.3% and 86.0% respectively,effectively improving the effect of component segmentation.

data augmentationpoint cloudpart segmentationsaliency

陈西江、孙曦、赵不钒、安庆、韩贤权

展开 >

武昌理工学院人工智能学院,湖北武汉 430223

武汉理工大学安全科学与应急管理学院,湖北武汉 430070

东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西南昌 330013

长江水利委员会长江科学院,湖北武汉 430019

展开 >

数据增强 点云 部件分割 显著性

国家自然科学基金国家自然科学基金湖北省自然科学基金长江科学院开放研究基金自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室开放基金

42171428422714472023AFB950CKWV20231177/KYMEMI-2021-2022-04

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(12)