首页|联合图像通道与像素双注意力机制精细化单幅图像去雪

联合图像通道与像素双注意力机制精细化单幅图像去雪

扫码查看
针对雪天退化图像中不规则和多变的雪花形态,提出一种双注意力机制的精细化图像去雪网络(Dual Attention Refinement Desnowing Network,DARDNet).网络引入维度拆分处理策略,并行处理通道和像素双维度特征,旨在有效配置两种注意力机制,兼顾提取复杂特征和保护纹理细节.其中,通道注意力机制针对雪花形态构建基础模块,形成U型金字塔结构分层提取深层次特征;像素注意力机制结合卷积形成自校准模块,串联高效Transformer关注图像纹理细节;两种注意力机制并行化处理后进行特征融合,提升信息融合度.在CSD,SRRS和Snow100K三个数据集上进行验证测试,其中在CSD数据集上PSNR达到32.16 dB,SSIM达到0.96.本文方法在处理多种雪花形态方面具有一定优势,能很好地重建纹理细节,获得高质量的去雪图像.
Dual attention refinement single image desnowing
Snow degradation is complex and variable,including various snowflakes,snow spots and snow streaks. To this end,we proposed a dual attention refinement desnowing network (DARDNet). The net-work introduced a dimensional splitting strategy to handle two-dimensional features of channel and pixel in parallel,aiming to achieve a good trade-off between complex features and texture details. The channel at-tention mechanism built a module for the multiple degradation and forms a U-shaped pyramid structure to extract the depth features;the pixel attention mechanism combined the convolution to form the self-calibra-tion module,and connected the efficient Transformer to preserve texture details;The parallel processed information streams were fused to improve the reconstruction quality of the image. Experiments were car-ried out on CSD,SRRS and Snow100K datasets,where PSNR reached 32.56 dB and SSIM reached 0.96 on CSD dataset. The experimental results show that our proposed method has obvious advantages in dealing with various snow degradations,which can better reconstruct the detail information and achieve sat-isfactory snow removal results.

single image desnowingchannel attentionpixel attentiondeep image prior

石明珠、糟斌、苏宇皓、林芯卉、孔思琪、谭慕贤

展开 >

天津师范大学电子与通信工程学院,天津 300387

天津无线移动通信与无线电能传输重点实验室,天津 300387

单幅图像去雪 通道注意力机制 像素注意力机制 深度图像先验

国家自然科学基金横向一般项目国家留学基金天津市研究生科研创新项目

6150132853H210342020081200452022SKYZ377

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(12)