首页|联合图像层级特征的压缩感知迭代重构

联合图像层级特征的压缩感知迭代重构

扫码查看
基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长.基于此,本文提出了一种联合图像层级特征的压缩感知迭代重构网络(Combining Image Hierarchical-Feature Network,CHFNet),在提高图像重构质量的同时减少重构时间.CHFNet由采样和重构两个子网络组成,采样子网络通过可学习的采样矩阵为重构过程提供更有效的测量值.在重构子网络中,设计了一种使用梯度下降操作和特征优化操作的迭代策略,同时提出一种轻量级CNN-Transformer混合架构,能够建模并优化高细粒度的图像层级特征,在增强网络感知能力的同时降低计算复杂度.此外,CHFNet通过联合优化学习采样重构,实现了完整的端到端训练.实验结果表明,所提算法在多个公共基准数据集上取得了良好的重构效果.在Urban100 数据集上,相较于现有最优算法CSformer,平均PSNR,SSIM分别提升0.63 dB和0.007 6;在0.10采样率下,相较CSformer在Set11,BSD68和Urban100数据集上的平均重构时间分别减少了2.744 7 s,3.551 0 s和4.775 0 s.
Iterative reconstruction of compressive sensing combining image hierarchical-feature
The compressive sensing image reconstruction algorithms based on Convolutional Neural Net-works could not capture long-range dependency of high-resolution images.Although Transformer can ad-dress this issue,it significantly increases the number of network parameters and the image reconstruction time.This paper proposed CHFNet,a combining image hierarchical-feature network for compressive sensing iterative-reconstruction to improve image reconstruction quality and reduce reconstruction time.CHFNet consisted of two sub-networks,sampling and reconstruction.The sampling sub-network utilized a learnable sampling matrix to provide more effective measurements for reconstruction phase.In the recon-struction sub-network,we introduced an iterative strategy using gradient descent and feature optimization operations,and proposed a lightweight CNN-Transformer hybrid architecture to model and optimize ex-tremely fine-grained image hierarchical-feature,enhancing network's sensing-capability and reducing com-putation complexity.Moreover,CHFNet achieved complete end-to-end training by jointly optimizing sam-pling-reconstruction process.The experimental results show that the proposed algorithm obtains satisfacto-ry recovery performance on several public benchmark datasets.On the Urban100 dataset,the method of this paper improves the average PSNR and SSIM metrics by 0.63 dB and 0.007 6 respectively compared to the existing optimal algorithm CSformer.At 0.10 sampling rate,the average reconstruction time of CHFNet decreases 2.744 7 s,3.551 0 s,and 4.775 0 s compared to CSformer on Set11,BSD68,and Urban100 datasets respectively.

compressive sensingimage hierarchical-featureTransformerconvolutional neural net-worksiterative strategyimage reconstruction

刘玉红、杨恒

展开 >

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

压缩感知 图像层级特征 Transformer 卷积神经网络 迭代策略 图像重构

国家自然科学基金资助项目国家自然科学基金资助项目

6216101661661025

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(14)