首页|基于支持向量回归的工业机器人空间误差预测

基于支持向量回归的工业机器人空间误差预测

扫码查看
鉴于高端智能制造领域对高精度应用场景下的工业机器人绝对定位精度的更高要求。本文主要研究基于支持向量回归(Support Vector Regression,SVR)模型的机器人空间误差预测方法。针对Staubli TX60型串联工业机器人进行了运动学建模和误差分析。搭建了基于Leica AT960激光跟踪仪的机器人测量实验平台,并进行了大量空间位姿点的测量,通过真实数据集训练优化SVR模型。基于SVR方法对机器人实际位姿误差进行预测与补偿,避免了复杂的误差建模过程。机器人平均位置误差和平均姿态误差分别由补偿前的(0。706 1 mm,0。174 2°)降低至(0。055 6 mm,0。024 6°),位置误差降低了92。12%,姿态误差降低了85。88%。最后,通过与BP,Elman神经网络以及传统LM几何参数标定方法进行对比,验证了基于SVR模型进行空间误差预测对机器人位置和姿态误差降低效果的有效性和均衡性。
Spatial error prediction method for industrial robot based on Support Vector Regression
The high-end intelligent manufacturing field has put forward higher requirements for the abso-lute pose accuracy of industrial robots in high-accuracy application scenarios.This paper investigated the improvement of robot accuracy performance based on Support Vector Regression(SVR).Kinematic mod-eling and error analysis were performed on the Staubli TX60 series industrial robot.A robot measurement experiment platform was established based on the Leica AT960 laser tracker,and a large number of spatial position points were measured.The SVR model was trained and optimized based on real data sets.The actual pose error of the robot is predicted by Support Vector Regression Model,which avoids the compli-cated error modeling in the model-based robot accuracy improvement method.The average position error and average attitude error of the robot are reduced from(0.706 1 mm,0.174 2°)to(0.055 6 mm,0.024 6°)before compensation,respectively,and the position error is reduced by 92.12%and the attitude error is re-duced by 85.88%.Finally,the comparison with BP neural network,Elman neural network and tradition-al LM geometric parameter calibration method verified the effectiveness and balance of spatial error predic-tion based on SVR model in reducing robot position and attitude errors.

Support vector regression(SVR)non-model calibrationindustrial robotserror predic-tionrobot calibration

乔贵方、高春晖、蒋欣怡、徐思敏、刘娣

展开 >

南京工程学院 自动化学院,江苏 南京 211167

东南大学 仪器科学与工程学院,江苏 南京 210096

支持向量回归 非模型标定 工业机器人 误差预测 机器人标定

国家自然科学基金资助项目中国博士后科学基金资助项目江苏省研究生科研与实践创新计划资助项目

519052582019M650095SJCX23_1164

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(18)