首页|基于MA-DETR的SAR图像飞机目标检测

基于MA-DETR的SAR图像飞机目标检测

扫码查看
SAR图像目标检测近年来一直是研究热点,但其成像不清晰的特点也导致DETR网络模型无法很好地提取其潜在特征,同时DETR网络也存在训练周期长、收敛慢的问题。为此设计了一种基于多标签分配的DETR网络(Multi-la-bel Assignment DETR,MA-DETR)用于SAR图像飞机目标检测任务。本文利用添加大尺度抖动(Large Scale Jitter-ing,LSJ)的数据增强模块增强网络训练效果,然后设计了一种多标签分配监督模块处理从编码器输出的数据,其中多个监督辅助头提取潜在特征并输入到解码器改善DETR网络一对一标签分配方式的不足之处。最后还设计了一种匹配增强模块加入解码器中,缓解由匈牙利匹配算法带来的匹配离散性,提高网络训练损失收敛速度。实验结果表明:在SAR AIRcraft数据集上,相较于原方法,本文方法使AP0。5和AP0。75精度分别提高了7。9%和7。4%,同时基于相同的训练网络,其损失收敛速度有3。3倍的提升。新的网络结构有效提高SAR图像目标检测精度,并且减少了DETR网络训练周期。
Aircraft target detection in SAR images based on MA-DETR
Target detection in SAR images has been a research hotspot in recent years,but the characteris-tics of unclear imaging also make the DETR network model unable to extract its potential features well.At the same time,the DETR network also has the problems of long training cycle and slow convergence.To this end,a Multi-label Assignment DETR(MA-DETR)network was designed for aircraft target de-tection in SAR images.In this paper,we used a data augmentation module with Large Scale Jittering(LSJ)to enhance the training effect of the network,and then designed a multi-label assignment supervi-sion module to process the data output from the encoder.Among them,multiple supervised auxiliary heads extract potential features and inputted them to the decoder to improve the defects of the one-to-one label assignment method of DETR network.Finally,a matching enhancement module was designed to be added to the decoder to alleviate the matching discreteness caused by the Hungarian matching algorithm and improve the convergence speed of network training loss.The experimental results on the SAR AIR-craft dataset show that,compared with the original method,the proposed method improves the AP0.5 and AP0.75 accuracy by 7.9%and 7.4%respectively,and reduces the training cycle by 3.3 times based on the same training network.The new network structure effectively improves the target detection accuracy of SAR images and reduces the training cycle of DETR network.

object detectionSynthetic Aperture Radar(SAR)imageDetection Transformer(DETR)networkattention mechanism

周文骏、黄硕、张宁、宋传龙、赵宇轩、段一帆、徐国庆

展开 >

上海大学 通信与信息工程学院,上海 200444

上海航天电子通讯设备研究所 上海市天基异构网络协同计算重点实验室,上海 201112

目标检测 SAR图像 DETR网络 注意力机制

国家重点研发计划资助项目

2023YFE0208100

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(18)