首页|采用级联策略融合边界特征的多尺度息肉分割网络

采用级联策略融合边界特征的多尺度息肉分割网络

扫码查看
结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题.针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络.首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干网络提取的图像特征,从而提高通道和空间位置的相关性.其次,考虑到边界区分度不够,设计了一个级联特征融合网络,以更好地保留边界信息并提高边界区分度,从而提高分割精度.最后,引入了一种双分支混合上采样模块来获取更多的特征细节信息,以实现特征的互补以及捕获更完整有效的特征.在CVC-ClinicDB和Kvasir数据集上进行测试,本文算法的平均Dice系数分别为0.944,0.920,平均交并比分别为0.900,0.869;而M2SNet算法的平均Dice系数分别为0.922,0.912,平均交并比分别为0.880,0.861.在ETIS-LaribPolypDB,CVC-300和CVC-ColonDB数据集上进行测试,本文算法的平均Dice系数分别为0.776,0.915,0.782;而M2SNet算法的平均Dice系数分别为0.749,0.903,0.758.实验结果表明本文算法的分割精度较高,泛化能力较强.
Multi-scale polyp segmentation network employing cascaded strategy to fuse boundary features
Colorectal polyp segmentation can effectively assist doctors in screening for colorectal adeno-mas,but polyp segmentation has problems such as more noise and insufficient boundary distinguishability.In response to these issues,this paper designed a multi-scale polyp segmentation network that adopts cas-caded strategy to fuse boundary features.Firstly,this paper proposed an improved channel grouping spa-tial enhancement module to enhance the image features extracted by the backbone network,thereby im-proving the correlation between channels and spatial positions.Secondly,considering the insufficient boundary distinction,a cascaded feature fusion network was designed to better retain boundary information and improve boundary distinction,so as improve the segmentation accuracy.Finally,a dual-branch hybrid upsampling module was introduced to obtain more detail feature information,so as to realize the comple-mentarity of features and capture more complete and effective features.Tested on the CVC-ClinicDB and Kvasir datasets,our algorithm achieves mean Dice coefficients of 0.944 and 0.920,and mean Intersection over Union of 0.900 and 0.869 respectively,compared to the M2SNet algorithm with average Dice coeffi-cients of 0.922 and 0.912,and mean IoU of 0.880 and 0.861 respectively.Tested on the ETIS-Larib-PolypDB,CVC-300,and CVC-ColonDB datasets,our algorithm achieves mean Dice coefficients of 0.776,0.915,and 0.782 respectively,while the M2SNet algorithm achieves mean Dice coefficients of 0.749,0.903,and 0.758 respectively.Experimental results show that the proposed algorithm has high segmentation accuracy and strong generalization ability.

multi-scale polyp segmentationchannel group spatial enhancementboundary feature en-hancementcascade feature fusiondual-branch upsampling

易见兵、万建辉、曹锋、李俊、陈鑫

展开 >

江西理工大学 信息工程学院,江西 赣州 341000

多维智能感知与控制江西省重点实验室,江西 赣州 341000

多尺度息肉分割 通道分组空间增强 边界特征增强 级联特征融合 双分支上采样

国家自然科学基金资助项目国家自然科学基金资助项目江西省自然科学基金资助项目江西省研究生创新专项资金资助

620660186236601720181BAB202004YC2023-S662

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(18)