首页|基于金字塔边缘增强的自矫正低光照目标检测

基于金字塔边缘增强的自矫正低光照目标检测

扫码查看
针对低光照图像整体亮度和对比度低,且目标边缘特征有限,导致目标检测算法识别定位精度不高的问题,提出一种低光照目标检测方法。首先,提出低光照图像增强网络,利用图像高斯金字塔、Retinex和暗通道去雾在低光照图像增强的优点,并在暗通道去雾算法中加入边缘轮廓特征,在增强整体亮度对比度的同时,突出目标的边缘特征;其次,为提高特征的提取准确性,在RTDETR的特征提取部分,设计了轻量化自矫正特征提取网络,以更小的计算量生成并矫正主干特征提取网络生成的特征图,提升目标检测精度。在ExDark数据集上的实验结果表明:较于基准RTDETR,精度提高了2。34%,召回率提升了2。09%,参数量减少了4。95 M,模型大小减少了13。31 MB,本文方法能够有效提升低光照场景下的目标检测性能。
A self correcting low-light object detection method based on pyramid edge enhancement
A low-light target detection method was proposed to overcome the problem of low overall brightness,contrast and limited edge features in low-light images,which lead to poor recognition and local-ization of target detection algorithms.Firstly,a low-light enhancement network was designed to utilize the advantages of image Gaussian pyramid,Retinex and dark-channel defogging in low-light image enhance-ment,and edge contour features were added to the dark-channel defogging algorithm to enhance the over-all luminance contrast while highlighting the edge features of the target.Secondly,to improve the accura-cy of feature extraction in the feature extraction section of RTDETR,a lightweight self correcting feature extraction network was designed to generate and correct the feature maps generated by the backbone fea-ture extraction network with smaller computational complexity,thereby improving the accuracy of object detection.The experimental results on the ExDark dataset shows that compared with the benchmark RT-DETR,the mAP improves by 2.34%,the recall improves by 2.09%,the parameter amount reduces by 4.95 M,the model size reduces by 13.31 MB,and the proposed method is able to effectively improve the performance of the target detection in the low-light scene.

object detectiondark targetslow-light intensity enhancementgaussian pyramidself cor-recting network

蒋占军、吴佰靖、马龙、廉敬

展开 >

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

目标检测 暗目标 低光照增强 高斯金字塔 自矫正网络

2024

光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

光学精密工程

CSTPCD北大核心
影响因子:2.059
ISSN:1004-924X
年,卷(期):2024.32(20)