首页|采用自注意力机制的OCT图像AMD亚型分类研究

采用自注意力机制的OCT图像AMD亚型分类研究

扫码查看
目前基于卷积神经网络(CNN)的视网膜光学相干层析成像(OCT)图像分类方法存在对于小范围病变区域识别不清的问题,导致在判断年龄相关性黄斑变性(AMD)疾病干湿性、脉络膜新生血管形成(CNV)的活动性时准确率不高,而正确判断病变类型对于眼科医生制定治疗方案至关重要.为此本文提出了一种基于自注意力机制的CNN模型MobileX-ViT,将传统卷积层和自注意力模块结合,同时提取浅层网络的特征信息并获取图像的全局信息,以提高模型分类准确率.实验证明,相比于经典CNN分类模型Inception-V3、ResNet-50、VGG-16和MobileNeXt,文章提出模型在分类准确率上分别提高了 5.6%、5.3%、4.5%和2.8%,证明了模型的有效性,为解决目前视网膜OCT图像分类中对于小范围病变区域识别不清的问题提供了新的方法.
AMD subtype classification technique using Self-attention mechanism
At present,the retinal optical coherence tomography(OCT)image classification method based on convolu-tional neural network(CNN)has the problem of unclear identification of small-scale lesion areas,which leads to the diffi-culty in diagnosing the dry and wet aspects of age-related macular degeneration(AMD),and judging the activity of cho-roidal neovascularization(CNV),but correct judgment of lesion type is crucial for ophthalmologists to formulate treat-ment plans.Therefore,a CNN model MobileX-ViT based on the self-attention mechanism is proposed,which combines the traditional convolution layers and self-attention module,and simultaneously extracts the feature information of the shallow network and obtains the global information of the image to improve the performance of the model.Experiments have proved that compared with the classic CNN classification models Inception-V3,ResNet-50,VGG-16 and Mobile-NeXt,the classification accuracy of the proposed model is increased by 5.6%,5.3%,4.5%and 2.8%respectively.The effectiveness of the model is proved,and it provides a new method to solve the problem of unclear identification of small-scale lesion areas in the current classification of retinal OCT images.

optical coherence tomographyage-related macular degenerationimage classificationself-attention mechanism

杨文逸、陈明惠、吴玉全、秦楷博、杨政奇

展开 >

上海理工大学健康科学与工程学院上海介入医疗器械工程技术研究中心,上海 200093

光学相干层析成像技术 年龄相关性黄斑变性 图像分类 自注意力机制

上海市科委产学研医项目

15DZ1940400

2024

光学技术
北京兵工学会 北京理工大学 中国北方光电工业总公司

光学技术

CSTPCD北大核心
影响因子:0.441
ISSN:1002-1582
年,卷(期):2024.50(1)
  • 27